/* Copyright (C) 2012 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "ParticleEmitter.h" #include "graphics/LightEnv.h" #include "graphics/LOSTexture.h" #include "graphics/ParticleEmitterType.h" #include "graphics/ParticleManager.h" #include "graphics/TextureManager.h" #include "renderer/Renderer.h" CParticleEmitter::CParticleEmitter(const CParticleEmitterTypePtr& type) : m_Type(type), m_Active(true), m_NextParticleIdx(0), m_EmissionRoundingError(0.f), m_LastUpdateTime(type->m_Manager.GetCurrentTime()), m_IndexArray(GL_DYNAMIC_DRAW), m_VertexArray(GL_DYNAMIC_DRAW) { // If we should start with particles fully emitted, pretend that we // were created in the past so the first update will produce lots of // particles. // TODO: instead of this, maybe it would make more sense to do a full // lifetime-length update of all emitters when the game first starts // (so that e.g. buildings constructed later on won't have fully-started // emitters, but those at the start will)? if (m_Type->m_StartFull) m_LastUpdateTime -= m_Type->m_MaxLifetime; m_Particles.reserve(m_Type->m_MaxParticles); m_AttributePos.type = GL_FLOAT; m_AttributePos.elems = 3; m_VertexArray.AddAttribute(&m_AttributePos); m_AttributeAxis.type = GL_FLOAT; m_AttributeAxis.elems = 2; m_VertexArray.AddAttribute(&m_AttributeAxis); m_AttributeUV.type = GL_FLOAT; m_AttributeUV.elems = 2; m_VertexArray.AddAttribute(&m_AttributeUV); m_AttributeColor.type = GL_UNSIGNED_BYTE; m_AttributeColor.elems = 4; m_VertexArray.AddAttribute(&m_AttributeColor); m_VertexArray.SetNumVertices(m_Type->m_MaxParticles * 4); m_VertexArray.Layout(); m_IndexArray.SetNumVertices(m_Type->m_MaxParticles * 6); m_IndexArray.Layout(); VertexArrayIterator index = m_IndexArray.GetIterator(); for (size_t i = 0; i < m_Type->m_MaxParticles; ++i) { *index++ = i*4 + 0; *index++ = i*4 + 1; *index++ = i*4 + 2; *index++ = i*4 + 2; *index++ = i*4 + 3; *index++ = i*4 + 0; } m_IndexArray.Upload(); m_IndexArray.FreeBackingStore(); } void CParticleEmitter::UpdateArrayData() { // Update m_Particles m_Type->UpdateEmitter(*this, m_Type->m_Manager.GetCurrentTime() - m_LastUpdateTime); m_LastUpdateTime = m_Type->m_Manager.GetCurrentTime(); // Regenerate the vertex array data: VertexArrayIterator attrPos = m_AttributePos.GetIterator(); VertexArrayIterator attrAxis = m_AttributeAxis.GetIterator(); VertexArrayIterator attrUV = m_AttributeUV.GetIterator(); VertexArrayIterator attrColor = m_AttributeColor.GetIterator(); ENSURE(m_Particles.size() <= m_Type->m_MaxParticles); CBoundingBoxAligned bounds; for (size_t i = 0; i < m_Particles.size(); ++i) { // TODO: for more efficient rendering, maybe we should replace this with // a degenerate quad if alpha is 0 bounds += m_Particles[i].pos; *attrPos++ = m_Particles[i].pos; *attrPos++ = m_Particles[i].pos; *attrPos++ = m_Particles[i].pos; *attrPos++ = m_Particles[i].pos; // Compute corner offsets, split into sin/cos components so the vertex // shader can multiply by the camera-right (or left?) and camera-up vectors // to get rotating billboards: float s = sin(m_Particles[i].angle) * m_Particles[i].size/2.f; float c = cos(m_Particles[i].angle) * m_Particles[i].size/2.f; (*attrAxis)[0] = c; (*attrAxis)[1] = s; ++attrAxis; (*attrAxis)[0] = s; (*attrAxis)[1] = -c; ++attrAxis; (*attrAxis)[0] = -c; (*attrAxis)[1] = -s; ++attrAxis; (*attrAxis)[0] = -s; (*attrAxis)[1] = c; ++attrAxis; (*attrUV)[0] = 1; (*attrUV)[1] = 0; ++attrUV; (*attrUV)[0] = 0; (*attrUV)[1] = 0; ++attrUV; (*attrUV)[0] = 0; (*attrUV)[1] = 1; ++attrUV; (*attrUV)[0] = 1; (*attrUV)[1] = 1; ++attrUV; SColor4ub color = m_Particles[i].color; // Special case: If the blending depends on the source colour, not the source alpha, // then pre-multiply by the alpha. (This is kind of a hack.) if (m_Type->m_BlendFuncDst == GL_ONE_MINUS_SRC_COLOR) { color.R = (color.R * color.A) / 255; color.G = (color.G * color.A) / 255; color.B = (color.B * color.A) / 255; } *attrColor++ = color; *attrColor++ = color; *attrColor++ = color; *attrColor++ = color; } m_ParticleBounds = bounds; m_VertexArray.Upload(); } void CParticleEmitter::Bind(const CShaderProgramPtr& shader) { CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture(); shader->BindTexture("losTex", los.GetTextureSmooth()); shader->Uniform("losTransform", los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f); const CLightEnv& lightEnv = g_Renderer.GetLightEnv(); shader->Uniform("sunColor", lightEnv.m_SunColor); shader->Uniform("fogColor", lightEnv.m_FogColor); shader->Uniform("fogParams", lightEnv.m_FogFactor, lightEnv.m_FogMax, 0.f, 0.f); shader->BindTexture("baseTex", m_Type->m_Texture); pglBlendEquationEXT(m_Type->m_BlendEquation); glBlendFunc(m_Type->m_BlendFuncSrc, m_Type->m_BlendFuncDst); } void CParticleEmitter::RenderArray(const CShaderProgramPtr& shader) { // Some drivers apparently don't like count=0 in glDrawArrays here, // so skip all drawing in that case if (m_Particles.empty()) return; u8* indexBase = m_IndexArray.Bind(); u8* base = m_VertexArray.Bind(); GLsizei stride = (GLsizei)m_VertexArray.GetStride(); shader->VertexPointer(3, GL_FLOAT, stride, base + m_AttributePos.offset); // Pass the sin/cos axis components as texcoords for no particular reason // other than that they fit. (Maybe this should be glVertexAttrib* instead?) shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, stride, base + m_AttributeUV.offset); shader->TexCoordPointer(GL_TEXTURE1, 2, GL_FLOAT, stride, base + m_AttributeAxis.offset); shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, base + m_AttributeColor.offset); shader->AssertPointersBound(); glDrawElements(GL_TRIANGLES, (GLsizei)(m_Particles.size() * 6), GL_UNSIGNED_SHORT, indexBase); g_Renderer.GetStats().m_DrawCalls++; g_Renderer.GetStats().m_Particles += m_Particles.size(); } void CParticleEmitter::Unattach(const CParticleEmitterPtr& self) { m_Active = false; m_Type->m_Manager.AddUnattachedEmitter(self); } void CParticleEmitter::AddParticle(const SParticle& particle) { if (m_NextParticleIdx >= m_Particles.size()) m_Particles.push_back(particle); else m_Particles[m_NextParticleIdx] = particle; m_NextParticleIdx = (m_NextParticleIdx + 1) % m_Type->m_MaxParticles; } void CParticleEmitter::SetEntityVariable(const std::string& name, float value) { m_EntityVariables[name] = value; } CModelParticleEmitter::CModelParticleEmitter(const CParticleEmitterTypePtr& type) : m_Type(type) { m_Emitter = CParticleEmitterPtr(new CParticleEmitter(m_Type)); } CModelParticleEmitter::~CModelParticleEmitter() { m_Emitter->Unattach(m_Emitter); } void CModelParticleEmitter::SetEntityVariable(const std::string& name, float value) { m_Emitter->SetEntityVariable(name, value); } CModelAbstract* CModelParticleEmitter::Clone() const { return new CModelParticleEmitter(m_Type); } void CModelParticleEmitter::CalcBounds() { // TODO: we ought to compute sensible bounds here, probably based on the // current computed particle positions plus the emitter type's largest // potential bounding box at the current position m_WorldBounds = m_Type->CalculateBounds(m_Emitter->GetPosition(), m_Emitter->GetParticleBounds()); } void CModelParticleEmitter::ValidatePosition() { // TODO: do we need to do anything here? // This is a convenient (though possibly not particularly appropriate) place // to invalidate bounds so they'll be recomputed from the recent particle data InvalidateBounds(); } void CModelParticleEmitter::InvalidatePosition() { } void CModelParticleEmitter::SetTransform(const CMatrix3D& transform) { m_Emitter->SetPosition(transform.GetTranslation()); }