#include "PathfindSparse.h" #define NODESMOOTH_STEPS 4 sparsePathTree::sparsePathTree( const CVector2D& _from, const CVector2D& _to, HEntity _entity, CBoundingObject* _destinationCollisionObject ) { from = _from; to = _to; assert( from.length() > 0.01f ); assert( to.length() > 0.01f ); entity = _entity; destinationCollisionObject = _destinationCollisionObject; leftPre = NULL; leftPost = NULL; rightPre = NULL; rightPost = NULL; type = SPF_OPEN_UNVISITED; leftImpossible = false; rightImpossible = false; } sparsePathTree::~sparsePathTree() { if( leftPre ) delete( leftPre ); if( leftPost ) delete( leftPost ); if( rightPre ) delete( rightPre ); if( rightPost ) delete( rightPost ); } bool sparsePathTree::slice() { if( type == SPF_OPEN_UNVISITED ) { rayIntersectionResults r; CVector2D forward = to - from; float len = forward.length(); forward /= len; CVector2D right = CVector2D( forward.y, -forward.x ); // Hit nothing or hit destination; that's OK. if( !getRayIntersection( from, forward, right, len, entity->m_bounds->m_radius * 1.1f, &r ) || ( r.boundingObject == destinationCollisionObject ) ) { type = SPF_CLOSED_DIRECT; return( true ); } float turningRadius = ( entity->m_bounds->m_radius + r.boundingObject->m_radius ) * 1.1f; if( turningRadius < entity->m_turningRadius ) turningRadius = entity->m_turningRadius; // Too close, an impossible turn if( r.distance < turningRadius || r.distance > ( len - turningRadius ) ) { type = SPF_IMPOSSIBLE; return( true ); } CVector2D delta = r.position - from; float length = delta.length(); float offsetDistance = ( turningRadius * length / sqrt( length * length - turningRadius * turningRadius ) ); favourLeft = false; if( r.closestApproach < 0 ) favourLeft = true; // First we path to the left... left = r.position - right * offsetDistance; leftPre = new sparsePathTree( from, left, entity, destinationCollisionObject ); leftPost = new sparsePathTree( left, to, entity, destinationCollisionObject ); // Then we path to the right... right = r.position + right * offsetDistance; rightPre = new sparsePathTree( from, right, entity, destinationCollisionObject ); rightPost = new sparsePathTree( right, to, entity, destinationCollisionObject ); // If anybody reaches this point and is thinking: // // "Let's Do The Time-Warp Agaaaain!" // // Let me know. type = SPF_OPEN_PROCESSING; return( true ); } else /* type == SPF_OPEN_PROCESSING */ { bool done = false; if( !leftImpossible ) { if( !done && ( leftPre->type & SPF_OPEN ) ) done |= leftPre->slice(); if( !done && ( leftPost->type & SPF_OPEN ) ) done |= leftPost->slice(); if( ( leftPre->type == SPF_IMPOSSIBLE ) || ( leftPost->type == SPF_IMPOSSIBLE ) ) leftImpossible = true; } if( !rightImpossible && !done ) { if( !done && ( rightPre->type & SPF_OPEN ) ) done |= rightPre->slice(); if( !done && ( rightPost->type & SPF_OPEN ) ) done |= rightPost->slice(); if( ( rightPre->type == SPF_IMPOSSIBLE ) || ( rightPost->type == SPF_IMPOSSIBLE ) ) rightImpossible = true; } if( leftImpossible && rightImpossible ) { type = SPF_IMPOSSIBLE; return( done ); } if( ( ( leftPre->type & SPF_SOLVED ) && ( leftPost->type & SPF_SOLVED ) ) || ( ( rightPre->type & SPF_SOLVED ) && ( rightPost->type & SPF_SOLVED ) ) ) { type = SPF_CLOSED_WAYPOINTED; return( done ); } return( done ); } } void sparsePathTree::pushResults( std::vector& nodelist ) { assert( type & SPF_SOLVED ); if( type == SPF_CLOSED_DIRECT ) { nodelist.push_back( to ); } else /* type == SPF_CLOSED_WAYPOINTED */ { leftImpossible = !( ( leftPre->type & SPF_SOLVED ) && ( leftPost->type & SPF_SOLVED ) ); rightImpossible = !( ( rightPre->type & SPF_SOLVED ) && ( rightPost->type & SPF_SOLVED ) ); if( !leftImpossible && ( favourLeft || rightImpossible ) ) { leftPost->pushResults( nodelist ); leftPre->pushResults( nodelist ); } else { assert( !rightImpossible ); rightPost->pushResults( nodelist ); rightPre->pushResults( nodelist ); } } } void nodeSmooth( HEntity entity, std::vector& nodelist ) { // All your CPU are belong to us. // But Jan wanted it ;) std::vector::iterator it; CVector2D next = nodelist.front(); CEntityOrder node; node.m_type = CEntityOrder::ORDER_GOTO_NOPATHING; node.m_data[0].location = next; entity->m_orderQueue.push_front( node ); for( it = nodelist.begin() + 1; it != nodelist.end(); it++ ) { if( ( it + 1 ) == nodelist.end() ) break; CVector2D current = *it; CVector2D previous = *( it + 1 ); CVector2D u = current - previous; CVector2D v = next - current; u = u.normalize(); v = v.normalize(); CVector2D ubar = u.beta(); CVector2D vbar = v.beta(); float alpha = entity->m_turningRadius * ( ubar - vbar ).length() / ( u + v ).length(); u *= alpha; v *= alpha; for( int t = NODESMOOTH_STEPS; t >= 0; t-- ) { float lambda = t / (float)NODESMOOTH_STEPS; CVector2D arcpoint = current + v * lambda * lambda - u * ( 1 - lambda ) * ( 1 - lambda ); node.m_data[0].location = arcpoint; entity->m_orderQueue.push_front( node ); } next = current; } } void pathSparse( HEntity entity, CVector2D destination ) { std::vector pathnodes; sparsePathTree sparseEngine( CVector2D( entity->m_position.X, entity->m_position.Z ), destination, entity, getContainingObject( destination ) ); while( sparseEngine.type & sparsePathTree::SPF_OPEN ) sparseEngine.slice(); if( sparseEngine.type & sparsePathTree::SPF_SOLVED ) { sparseEngine.pushResults( pathnodes ); nodeSmooth( entity, pathnodes ); } else { // Try a straight line. All we can do, really. CEntityOrder direct; direct.m_type = CEntityOrder::ORDER_GOTO_NOPATHING; direct.m_data[0].location = destination; entity->m_orderQueue.push_front( direct ); } }