0ad/source/lib/adts.h
janwas 37663d86fb # bugfixes: prevent incorrect FPU results due to 0-length files, and incorrect file caching due to timestamps delayed by long sojourn in the debugger.
file_cache: avoid caching 0-length files (prevents div by 0)
adts: bit more defensiveness against size=0
trace: now use "dividers" in the trace file instead of relying on
monotony property of the get_time source. this avoids incorrectly
splitting the trace into runs when time is actually not monotonous
(which would cause lots of warnings), e.g. due to debugger.
in the process, changed interface to return (most-recent first) runs,
instead of only the raw unsorted entries.

This was SVN commit r3832.
2006-04-30 21:45:32 +00:00

1465 lines
34 KiB
C++

/**
* =========================================================================
* File : adts.h
* Project : 0 A.D.
* Description : useful Abstract Data Types not provided by STL.
*
* @author Jan.Wassenberg@stud.uni-karlsruhe.de
* =========================================================================
*/
/*
* Copyright (c) 2005 Jan Wassenberg
*
* Redistribution and/or modification are also permitted under the
* terms of the GNU General Public License as published by the
* Free Software Foundation (version 2 or later, at your option).
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef ADTS_H__
#define ADTS_H__
#include "lib.h"
#include <cfloat>
#include <cassert>
#include <list>
#include <map>
#include <queue>
template<typename Key, typename T> class DHT_Traits
{
public:
static const size_t initial_entries = 16;
size_t hash(Key key) const;
bool equal(Key k1, Key k2) const;
Key get_key(T t) const;
};
template<> class DHT_Traits<const char*, const char*>
{
public:
static const size_t initial_entries = 512;
size_t hash(const char* key) const
{
return (size_t)fnv_lc_hash(key);
}
bool equal(const char* k1, const char* k2) const
{
return !strcmp(k1, k2);
}
const char* get_key(const char* t) const
{
return t;
}
};
// intended for pointer types
template<typename Key, typename T, typename Traits=DHT_Traits<Key,T> >
class DynHashTbl
{
T* tbl;
u16 num_entries;
u16 max_entries; // when initialized, = 2**n for faster modulo
Traits tr;
T& get_slot(Key key) const
{
size_t hash = tr.hash(key);
debug_assert(max_entries != 0); // otherwise, mask will be incorrect
const uint mask = max_entries-1;
for(;;)
{
T& t = tbl[hash & mask];
// empty slot encountered => not found
if(!t)
return t;
// keys are actually equal => found it
if(tr.equal(key, tr.get_key(t)))
return t;
// keep going (linear probing)
hash++;
}
}
void expand_tbl()
{
// alloc a new table (but don't assign it to <tbl> unless successful)
T* old_tbl = tbl;
tbl = (T*)calloc(max_entries*2, sizeof(T));
if(!tbl)
{
tbl = old_tbl;
throw std::bad_alloc();
}
max_entries += max_entries;
// must be set before get_slot
// newly initialized, nothing to copy - done
if(!old_tbl)
return;
// re-hash from old table into the new one
for(size_t i = 0; i < max_entries/2u; i++)
{
T t = old_tbl[i];
if(t)
get_slot(tr.get_key(t)) = t;
}
free(old_tbl);
}
public:
DynHashTbl()
{
tbl = 0;
num_entries = 0;
max_entries = tr.initial_entries/2; // will be doubled in expand_tbl
debug_assert(is_pow2(max_entries));
expand_tbl();
}
~DynHashTbl()
{
clear();
}
void clear()
{
// note: users might call clear() right before the dtor runs,
// so safely handling calling this twice.
SAFE_FREE(tbl);
num_entries = 0;
// rationale: must not set to 0 because expand_tbl only doubles the size.
// don't keep the previous size because it may have become huge and
// there is no provision for shrinking.
max_entries = tr.initial_entries/2; // will be doubled in expand_tbl
}
void insert(const Key key, const T t)
{
// more than 75% full - increase table size.
// do so before determining slot; this will invalidate previous pnodes.
if(num_entries*4 >= max_entries*3)
expand_tbl();
T& slot = get_slot(key);
debug_assert(slot == 0); // not already present
slot = t;
num_entries++;
}
T find(Key key) const
{
return get_slot(key);
}
size_t size() const
{
return num_entries;
}
class iterator
{
public:
typedef std::forward_iterator_tag iterator_category;
typedef T value_type;
typedef ptrdiff_t difference_type;
typedef const T* pointer;
typedef const T& reference;
iterator()
{
}
iterator(T* pos_, T* end_) : pos(pos_), end(end_)
{
}
T& operator*() const
{
return *pos;
}
iterator& operator++() // pre
{
do
pos++;
while(pos != end && *pos == 0);
return (*this);
}
bool operator==(const iterator& rhs) const
{
return pos == rhs.pos;
}
bool operator<(const iterator& rhs) const
{
return (pos < rhs.pos);
}
// derived
const T* operator->() const
{
return &**this;
}
bool operator!=(const iterator& rhs) const
{
return !(*this == rhs);
}
iterator operator++(int) // post
{
iterator tmp = *this; ++*this; return tmp;
}
protected:
T* pos;
T* end;
// only used when incrementing (avoid going beyond end of table)
};
iterator begin() const
{
T* pos = tbl;
while(pos != tbl+max_entries && *pos == 0)
pos++;
return iterator(pos, tbl+max_entries);
}
iterator end() const
{
return iterator(tbl+max_entries, 0);
}
};
//-----------------------------------------------------------------------------
/*
Cache for items of variable size and value/"cost".
underlying displacement algorithm is pluggable; default is "Landlord".
template reference:
Entry provides size, cost, credit and credit_density().
rationale:
- made a template instead of exposing Cache::Entry because
that would drag a lot of stuff out of Cache.
- calculates its own density since that entails a Divider functor,
which requires storage inside Entry.
Entries is a collection with iterator and begin()/end() and
"static Entry& entry_from_it(iterator)".
rationale:
- STL map has pair<key, item> as its value_type, so this
function would return it->second. however, we want to support
other container types (where we'd just return *it).
Manager is a template parameterized on typename Key and class Entry.
its interface is as follows:
// is the cache empty?
bool empty() const;
// add (key, entry) to cache.
void add(Key key, const Entry& entry);
// if the entry identified by <key> is not in cache, return false;
// otherwise return true and pass back a pointer to it.
bool find(Key key, const Entry** pentry) const;
// remove an entry from cache, which is assumed to exist!
// this makes sense because callers will typically first use find() to
// return info about the entry; this also checks if present.
void remove(Key key);
// mark <entry> as just accessed for purpose of cache management.
// it will tend to be kept in cache longer.
void on_access(Entry& entry);
// caller's intent is to remove the least valuable entry.
// in implementing this, you have the latitude to "shake loose"
// several entries (e.g. because their 'value' is equal).
// they must all be push_back-ed into the list; Cache will dole
// them out one at a time in FIFO order to callers.
//
// rationale:
// - it is necessary for callers to receive a copy of the
// Entry being evicted - e.g. file_cache owns its items and
// they must be passed back to allocator when evicted.
// - e.g. Landlord can potentially see several entries become
// evictable in one call to remove_least_valuable. there are
// several ways to deal with this:
// 1) generator interface: we return one of { empty, nevermind,
// removed, remove-and-call-again }. this greatly complicates
// the call site.
// 2) return immediately after finding an item to evict.
// this changes cache behavior - entries stored at the
// beginning would be charged more often (unfair).
// resuming charging at the next entry doesn't work - this
// would have to be flushed when adding, at which time there
// is no provision for returning any items that may be evicted.
// 3) return list of all entries "shaken loose". this incurs
// frequent mem allocs, which can be alleviated via suballocator.
// note: an intrusive linked-list doesn't make sense because
// entries to be returned need to be copied anyway (they are
// removed from the manager's storage).
void remove_least_valuable(std::list<Entry>& entry_list)
*/
//
// functors to calculate minimum credit density (MCD)
//
// MCD is required for the Landlord algorithm's evict logic.
// [Young02] calls it '\delta'.
// scan over all entries and return MCD.
template<class Entries> float ll_calc_min_credit_density(const Entries& entries)
{
float min_credit_density = FLT_MAX;
for(typename Entries::const_iterator it = entries.begin(); it != entries.end(); ++it)
{
const float credit_density = Entries::entry_from_it(it).credit_density();
min_credit_density = fminf(min_credit_density, credit_density);
}
return min_credit_density;
}
// note: no warning is given that the MCD entry is being removed!
// (reduces overhead in remove_least_valuable)
// these functors must account for that themselves (e.g. by resetting
// their state directly after returning MCD).
// determine MCD by scanning over all entries.
// tradeoff: O(N) time complexity, but all notify* calls are no-ops.
template<class Entry, class Entries>
class McdCalc_Naive
{
public:
void notify_added(const Entry&) const {}
void notify_decreased(const Entry&) const {}
void notify_impending_increase_or_remove(const Entry&) const {}
void notify_increased_or_removed(const Entry&) const {}
float operator()(const Entries& entries) const
{
const float mcd = ll_calc_min_credit_density(entries);
return mcd;
}
};
// cache previous MCD and update it incrementally (when possible).
// tradeoff: amortized O(1) time complexity, but notify* calls must
// perform work whenever something in the cache changes.
template<class Entry, class Entries>
class McdCalc_Cached
{
public:
McdCalc_Cached() : min_credit_density(FLT_MAX), min_valid(false) {}
void notify_added(const Entry& entry)
{
// when adding a new item, the minimum credit density can only
// decrease or remain the same; acting as if entry's credit had
// been decreased covers both cases.
notify_decreased(entry);
}
void notify_decreased(const Entry& entry)
{
min_credit_density = MIN(min_credit_density, entry.credit_density());
}
void notify_impending_increase_or_remove(const Entry& entry)
{
// remember if this entry had the smallest density
is_min_entry = feq(min_credit_density, entry.credit_density());
}
void notify_increased_or_removed(const Entry& UNUSED(entry))
{
// .. it did and was increased or removed. we must invalidate
// MCD and recalculate it next time.
if(is_min_entry)
{
min_valid = false;
min_credit_density = -1.0f;
}
}
float operator()(const Entries& entries)
{
if(min_valid)
{
// the entry that has MCD will be removed anyway by caller;
// we need to invalidate here because they don't call
// notify_increased_or_removed.
min_valid = false;
return min_credit_density;
}
// this is somewhat counterintuitive. since we're calculating
// MCD directly, why not mark our cached version of it valid
// afterwards? reason is that our caller will remove the entry with
// MCD, so it'll be invalidated anyway.
// instead, our intent is to calculate MCD for the *next time*.
const float ret = ll_calc_min_credit_density(entries);
min_valid = true;
min_credit_density = FLT_MAX;
return ret;
}
private:
float min_credit_density;
bool min_valid;
// temporary flag set by notify_impending_increase_or_remove
bool is_min_entry;
};
//
// Landlord cache management policy: see [Young02].
//
// in short, each entry has credit initially set to cost. when wanting to
// remove an item, all are charged according to MCD and their size;
// entries are evicted if their credit is exhausted. accessing an entry
// restores "some" of its credit.
template<typename Key, typename Entry, template<class Entry, class Entries> class McdCalc = McdCalc_Cached>
class Landlord
{
public:
bool empty() const
{
return map.empty();
}
void add(Key key, const Entry& entry)
{
// adapter for add_ (which returns an iterator)
(void)add_(key, entry);
}
bool find(Key key, const Entry** pentry) const
{
MapCIt it = map.find(key);
if(it == map.end())
return false;
*pentry = &it->second;
return true;
}
void remove(Key key)
{
MapIt it = map.find(key);
debug_assert(it != map.end());
remove_(it);
}
void on_access(Entry& entry)
{
mcd_calc.notify_impending_increase_or_remove(entry);
// Landlord algorithm calls for credit to be reset to anything
// between its current value and the cost.
const float gain = 0.75f; // restore most credit
entry.credit = gain*entry.cost + (1.0f-gain)*entry.credit;
mcd_calc.notify_increased_or_removed(entry);
}
void remove_least_valuable(std::list<Entry>& entry_list)
{
// we are required to evict at least one entry. one iteration
// ought to suffice, due to definition of min_credit_density and
// tolerance; however, we provide for repeating if necessary.
again:
// messing with this (e.g. raising if tiny) would result in
// different evictions than Landlord_Lazy, which is unacceptable.
// nor is doing so necessary: if mcd is tiny, so is credit.
const float min_credit_density = mcd_calc(map);
debug_assert(min_credit_density > 0.0f);
for(MapIt it = map.begin(); it != map.end();) // no ++it
{
Entry& entry = it->second;
charge(entry, min_credit_density);
if(should_evict(entry))
{
entry_list.push_back(entry);
// annoying: we have to increment <it> before erasing
MapIt it_to_remove = it++;
map.erase(it_to_remove);
}
else
{
mcd_calc.notify_decreased(entry);
++it;
}
}
if(entry_list.empty())
goto again;
}
protected:
// note: use hash_map instead of map for better locality
// (relevant when iterating over all items in remove_least_valuable)
class Map : public STL_HASH_MAP<Key, Entry>
{
public:
static Entry& entry_from_it(typename Map::iterator it) { return it->second; }
static const Entry& entry_from_it(typename Map::const_iterator it) { return it->second; }
};
typedef typename Map::iterator MapIt;
typedef typename Map::const_iterator MapCIt;
Map map;
// add entry and return iterator pointing to it.
MapIt add_(Key key, const Entry& entry)
{
typedef std::pair<MapIt, bool> PairIB;
typename Map::value_type val = std::make_pair(key, entry);
PairIB ret = map.insert(val);
debug_assert(ret.second); // must not already be in map
mcd_calc.notify_added(entry);
return ret.first;
}
// remove entry (given by iterator) directly.
void remove_(MapIt it)
{
const Entry& entry = it->second;
mcd_calc.notify_impending_increase_or_remove(entry);
mcd_calc.notify_increased_or_removed(entry);
map.erase(it);
}
void charge(Entry& entry, float delta)
{
entry.credit -= delta * entry.size;
// don't worry about entry.size being 0 - if so, cost
// should also be 0, so credit will already be 0 anyway.
}
// for each entry, 'charge' it (i.e. reduce credit by) delta * its size.
// delta is typically MCD (see above); however, several such updates
// may be lumped together to save time. Landlord_Lazy does this.
void charge_all(float delta)
{
for(MapIt it = map.begin(); it != map.end(); ++it)
{
Entry& entry = it->second;
entry.credit -= delta * entry.size;
if(!should_evict(entry))
mcd_calc.notify_decreased(entry);
}
}
// is entry's credit exhausted? if so, it should be evicted.
bool should_evict(const Entry& entry)
{
// we need a bit of leeway because density calculations may not
// be exact. choose value carefully: must not be high enough to
// trigger false positives.
return entry.credit < 0.0001f;
}
private:
McdCalc<Entry, Map> mcd_calc;
};
// Cache manger policies. (these are partial specializations of Landlord,
// adapting it to the template params required by Cache)
template<class Key, class Entry> class Landlord_Naive : public Landlord<Key, Entry, McdCalc_Naive> {};
template<class Key, class Entry> class Landlord_Cached: public Landlord<Key, Entry, McdCalc_Cached> {};
// variant of Landlord that adds a priority queue to directly determine
// which entry to evict. this allows lumping several charge operations
// together and thus reduces iteration over all entries.
// tradeoff: O(logN) removal (instead of N), but additional O(N) storage.
template<typename Key, class Entry>
class Landlord_Lazy : public Landlord_Naive<Key, Entry>
{
typedef typename Landlord_Naive<Key, Entry>::Map Map;
typedef typename Landlord_Naive<Key, Entry>::MapIt MapIt;
typedef typename Landlord_Naive<Key, Entry>::MapCIt MapCIt;
public:
Landlord_Lazy() { pending_delta = 0.0f; }
void add(Key key, const Entry& entry)
{
// we must apply pending_delta now - otherwise, the existing delta
// would later be applied to this newly added item (incorrect).
commit_pending_delta();
MapIt it = Parent::add_(key, entry);
pri_q.push(it);
}
void remove(Key key)
{
Parent::remove(key);
// reconstruct pri_q from current map. this is slow (N*logN) and
// could definitely be done better, but we don't bother since
// remove is a very rare operation (e.g. invalidating entries).
while(!pri_q.empty())
pri_q.pop();
for(MapCIt it = this->map.begin(); it != this->map.end(); ++it)
pri_q.push(it);
}
void on_access(Entry& entry)
{
Parent::on_access(entry);
// entry's credit was changed. we now need to reshuffle the
// pri queue to reflect this.
pri_q.ensure_heap_order();
}
void remove_least_valuable(std::list<Entry>& entry_list)
{
MapIt least_valuable_it = pri_q.top(); pri_q.pop();
Entry& entry = Map::entry_from_it(least_valuable_it);
entry_list.push_back(entry);
// add to pending_delta the MCD that would have resulted
// if removing least_valuable_it normally.
// first, calculate actual credit (i.e. apply pending_delta to
// this entry); then add the resulting density to pending_delta.
entry.credit -= pending_delta*entry.size;
const float credit_density = entry.credit_density();
debug_assert(credit_density > 0.0f);
pending_delta += credit_density;
Parent::remove_(least_valuable_it);
}
private:
typedef Landlord_Naive<Key, Entry> Parent;
// sort iterators by credit_density of the Entry they reference.
struct CD_greater
{
bool operator()(MapIt it1, MapIt it2) const
{
return Map::entry_from_it(it1).credit_density() >
Map::entry_from_it(it2).credit_density();
}
};
// wrapper on top of priority_queue that allows 'heap re-sift'
// (see on_access).
// notes:
// - greater comparator makes pri_q.top() the one with
// LEAST credit_density, which is what we want.
// - deriving from an STL container is a bit dirty, but we need this
// to get at the underlying data (priority_queue interface is not
// very capable).
class PriQ: public std::priority_queue<MapIt, std::vector<MapIt>, CD_greater>
{
public:
void ensure_heap_order()
{
// TODO: this is actually N*logN - ouch! that explains high
// CPU cost in profile. this is called after only 1 item has
// changed, so a logN "sift" operation ought to suffice.
// that's not supported by the STL heap functions, so we'd
// need a better implementation. pending..
std::make_heap(this->c.begin(), this->c.end(), this->comp);
}
};
PriQ pri_q;
// delta values that have accumulated over several
// remove_least_valuable() calls. applied during add().
float pending_delta;
void commit_pending_delta()
{
if(pending_delta > 0.0f)
{
this->charge_all(pending_delta);
pending_delta = 0.0f;
// we've changed entry credit, so the heap order *may* have been
// violated; reorder the pri queue. (I don't think so,
// due to definition of delta, but we'll play it safe)
pri_q.ensure_heap_order();
}
}
};
//
// functor that implements division of first arg by second
//
// this is used to calculate credit_density(); performance matters
// because this is called for each entry during each remove operation.
// floating-point division (fairly slow)
class Divider_Naive
{
public:
Divider_Naive() {} // needed for default CacheEntry ctor
Divider_Naive(float UNUSED(x)) {}
float operator()(float val, float divisor) const
{
return val / divisor;
}
};
// caches reciprocal of divisor and multiplies by that.
// tradeoff: only 4 clocks (instead of 20), but 4 bytes extra per entry.
class Divider_Recip
{
float recip;
public:
Divider_Recip() {} // needed for default CacheEntry ctor
Divider_Recip(float x) { recip = 1.0f / x; }
float operator()(float val, float UNUSED(divisor)) const
{
return val * recip;
}
};
// TODO: use SSE/3DNow RCP instruction? not yet, because not all systems
// support it and overhead of detecting this support eats into any gains.
// initial implementation for testing purposes; quite inefficient.
template<typename Key, typename Entry>
class LRU
{
public:
bool empty() const
{
return lru.empty();
}
void add(Key key, const Entry& entry)
{
lru.push_back(KeyAndEntry(key, entry));
}
bool find(Key key, const Entry** pentry) const
{
CIt it = std::find_if(lru.begin(), lru.end(), KeyEq(key));
if(it == lru.end())
return false;
*pentry = &it->entry;
return true;
}
void remove(Key key)
{
std::remove_if(lru.begin(), lru.end(), KeyEq(key));
}
void on_access(Entry& entry)
{
for(It it = lru.begin(); it != lru.end(); ++it)
{
if(&entry == &it->entry)
{
add(it->key, it->entry);
lru.erase(it);
return;
}
}
debug_warn("entry not found in list");
}
void remove_least_valuable(std::list<Entry>& entry_list)
{
entry_list.push_back(lru.front().entry);
lru.pop_front();
}
private:
struct KeyAndEntry
{
Key key;
Entry entry;
KeyAndEntry(Key key_, const Entry& entry_)
: key(key_), entry(entry_) {}
};
class KeyEq
{
Key key;
public:
KeyEq(Key key_) : key(key_) {}
bool operator()(const KeyAndEntry& ke) const
{
return ke.key == key;
}
};
typedef std::list<KeyAndEntry> List;
typedef typename List::iterator It;
typedef typename List::const_iterator CIt;
List lru;
};
//
// Cache
//
template
<
typename Key, typename Item,
// see documentation above for Manager's interface.
template<typename Key, class Entry> class Manager = Landlord_Cached,
class Divider = Divider_Naive
>
class Cache
{
public:
Cache() : mgr() {}
void add(Key key, Item item, size_t size, uint cost)
{
return mgr.add(key, Entry(item, size, cost));
}
// remove the entry identified by <key>. expected usage is to check
// if present and determine size via retrieve(), so no need for
// error checking.
// useful for invalidating single cache entries.
void remove(Key key)
{
mgr.remove(key);
}
// if there is no entry for <key> in the cache, return false.
// otherwise, return true and pass back item and (optionally) size.
//
// if refill_credit (default), the cache manager 'rewards' this entry,
// tending to keep it in cache longer. this parameter is not used in
// normal operation - it's only for special cases where we need to
// make an end run around the cache accounting (e.g. for cache simulator).
bool retrieve(Key key, Item& item, size_t* psize = 0, bool refill_credit = true)
{
const Entry* entry;
if(!mgr.find(key, &entry))
return false;
item = entry->item;
if(psize)
*psize = entry->size;
if(refill_credit)
mgr.on_access((Entry&)*entry);
return true;
}
// toss out the least valuable entry. return false if cache is empty,
// otherwise true and (optionally) pass back its item and size.
bool remove_least_valuable(Item* pItem = 0, size_t* pSize = 0)
{
// as an artefact of the cache eviction policy, several entries
// may be "shaken loose" by one call to remove_least_valuable.
// we cache them in a list to disburden callers (they always get
// exactly one).
if(entries_awaiting_eviction.empty())
{
if(empty())
return false;
mgr.remove_least_valuable(entries_awaiting_eviction);
debug_assert(!entries_awaiting_eviction.empty());
}
const Entry& entry = entries_awaiting_eviction.front();
if(pItem)
*pItem = entry.item;
if(pSize)
*pSize = entry.size;
entries_awaiting_eviction.pop_front();
return true;
}
bool empty() const
{
return mgr.empty();
}
private:
// this is applicable to all cache management policies and stores all
// required information. a Divider functor is used to implement
// division for credit_density.
template<class InnerDivider> struct CacheEntry
{
Item item;
size_t size;
uint cost;
float credit;
InnerDivider divider;
// needed for mgr.remove_least_valuable's entry_copy
CacheEntry() {}
CacheEntry(Item item_, size_t size_, uint cost_)
: item(item_), divider((float)size_)
{
size = size_;
cost = cost_;
credit = cost;
// else divider will fail
debug_assert(size != 0);
}
float credit_density() const
{
return divider(credit, (float)size);
}
};
typedef CacheEntry<Divider> Entry;
// see note in remove_least_valuable().
std::list<Entry> entries_awaiting_eviction;
Manager<Key, Entry> mgr;
};
//
// FIFO bit queue
//
struct BitBuf
{
ulong buf;
ulong cur; // bit to be appended (toggled by add())
ulong len; // |buf| [bits]
void reset()
{
buf = 0;
cur = 0;
len = 0;
}
// toggle current bit if desired, and add to buffer (new bit is LSB)
void add(ulong toggle)
{
cur ^= toggle;
buf <<= 1;
buf |= cur;
len++;
}
// extract LS n bits
uint extract(ulong n)
{
ulong i = buf & ((1ul << n) - 1);
buf >>= n;
return i;
}
};
//
// ring buffer - static array, accessible modulo n
//
template<class T, size_t n> class RingBuf
{
size_t size_; // # of entries in buffer
size_t head; // index of oldest item
size_t tail; // index of newest item
T data[n];
public:
RingBuf() : data() { clear(); }
void clear() { size_ = 0; head = 0; tail = n-1; }
size_t size() { return size_; }
bool empty() { return size_ == 0; }
const T& operator[](int ofs) const
{
debug_assert(!empty());
size_t idx = (size_t)(head + ofs);
return data[idx % n];
}
T& operator[](int ofs)
{
debug_assert(!empty());
size_t idx = (size_t)(head + ofs);
return data[idx % n];
}
T& front()
{
debug_assert(!empty());
return data[head];
}
const T& front() const
{
debug_assert(!empty());
return data[head];
}
T& back()
{
debug_assert(!empty());
return data[tail];
}
const T& back() const
{
debug_assert(!empty());
return data[tail];
}
void push_back(const T& item)
{
if(size_ < n)
size_++;
// do not complain - overwriting old values is legit
// (e.g. sliding window).
else
head = (head + 1) % n;
tail = (tail + 1) % n;
data[tail] = item;
}
void pop_front()
{
if(size_ != 0)
{
size_--;
head = (head + 1) % n;
}
else
debug_warn("underflow");
}
class iterator
{
public:
typedef std::random_access_iterator_tag iterator_category;
typedef T value_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef T& reference;
iterator() : data(0), pos(0)
{}
iterator(T* data_, size_t pos_) : data(data_), pos(pos_)
{}
T& operator[](int idx) const
{ return data[(pos+idx) % n]; }
T& operator*() const
{ return data[pos % n]; }
T* operator->() const
{ return &**this; }
iterator& operator++() // pre
{ ++pos; return (*this); }
iterator operator++(int) // post
{ iterator tmp = *this; ++*this; return tmp; }
bool operator==(const iterator& rhs) const
{ return data == rhs.data && pos == rhs.pos; }
bool operator!=(const iterator& rhs) const
{ return !(*this == rhs); }
bool operator<(const iterator& rhs) const
{ return (pos < rhs.pos); }
iterator& operator+=(difference_type ofs)
{ pos += ofs; return *this; }
iterator& operator-=(difference_type ofs)
{ return (*this += -ofs); }
iterator operator+(difference_type ofs) const
{ iterator tmp = *this; return (tmp += ofs); }
iterator operator-(difference_type ofs) const
{ iterator tmp = *this; return (tmp -= ofs); }
difference_type operator-(const iterator right) const
{ return (difference_type)(pos - right.pos); }
protected:
T* data;
size_t pos;
// not mod-N so that begin != end when buffer is full.
};
class const_iterator
{
public:
typedef std::random_access_iterator_tag iterator_category;
typedef T value_type;
typedef ptrdiff_t difference_type;
typedef const T* pointer;
typedef const T& reference;
const_iterator() : data(0), pos(0)
{}
const_iterator(const T* data_, size_t pos_) : data(data_), pos(pos_)
{}
const T& operator[](int idx) const
{ return data[(pos+idx) % n]; }
const T& operator*() const
{ return data[pos % n]; }
const T* operator->() const
{ return &**this; }
const_iterator& operator++() // pre
{ ++pos; return (*this); }
const_iterator operator++(int) // post
{ const_iterator tmp = *this; ++*this; return tmp; }
bool operator==(const const_iterator& rhs) const
{ return data == rhs.data && pos == rhs.pos; }
bool operator!=(const const_iterator& rhs) const
{ return !(*this == rhs); }
bool operator<(const const_iterator& rhs) const
{ return (pos < rhs.pos); }
iterator& operator+=(difference_type ofs)
{ pos += ofs; return *this; }
iterator& operator-=(difference_type ofs)
{ return (*this += -ofs); }
iterator operator+(difference_type ofs) const
{ iterator tmp = *this; return (tmp += ofs); }
iterator operator-(difference_type ofs) const
{ iterator tmp = *this; return (tmp -= ofs); }
difference_type operator-(const iterator right) const
{ return (difference_type)(pos - right.pos); }
protected:
const T* data;
size_t pos;
// not mod-N so that begin != end when buffer is full.
};
iterator begin()
{
return iterator(data, (size_ < n)? 0 : head);
}
const_iterator begin() const
{
return const_iterator(data, (size_ < n)? 0 : head);
}
iterator end()
{
return iterator(data, (size_ < n)? size_ : head+n);
}
const_iterator end() const
{
return const_iterator(data, (size_ < n)? size_ : head+n);
}
};
//
// cache
//
// owns a pool of resources (Entry-s), associated with a 64 bit id.
// typical use: add all available resources to the cache via grow();
// assign() ids to the resources, and update the resource data if necessary;
// retrieve() the resource, given id.
template<class Entry> class LRUCache
{
public:
// 'give' Entry to the cache.
int grow(Entry& e)
{
// add to front of LRU list, but not index
// (since we don't have an id yet)
lru_list.push_front(Line(e));
return 0;
}
// find the least-recently used line; associate id with it,
// and return its Entry. fails (returns 0) if id is already
// associated, or all lines are locked.
Entry* assign(u64 id)
{
if(find_line(id))
{
debug_warn("assign: id already in cache!");
return 0;
}
// scan in least->most used order for first non-locked entry
List_iterator l = lru_list.end();
while(l != lru_list.begin())
{
--l;
if(l->refs == 0)
goto have_line;
}
// all are locked and cannot be displaced.
// caller should grow() enough lines so that this never happens.
debug_warn("assign: all lines locked - grow() more lines");
return 0;
have_line:
// update mapping (index)
idx.erase(id);
idx[id] = l;
l->id = id;
return &l->ent;
}
// find line identified by id; return its entry or 0 if not in cache.
Entry* retrieve(u64 id)
{
// invalid: id 0 denotes not-yet-associated lines
if(id == 0)
{
debug_warn("retrieve: id 0 not allowed");
return 0;
}
Line* l = find_line(id);
return l? &l->ent : 0;
}
// add/release a reference to a line, to protect it against
// displacement via associate(). we verify refs >= 0.
int lock(u64 id, bool locked)
{
Line* l = find_line(id);
if(!l)
return -1;
if(locked)
l->refs++;
else
{
debug_assert(l->refs > 0);
l->refs--;
}
return 0;
}
private:
// implementation:
// cache lines are stored in a list, most recently used in front.
// a map finds the list entry containing a given id in log-time.
struct Line
{
u64 id;
Entry ent;
int refs; // protect from displacement if > 0
Line(Entry& _ent)
{
id = 0;
ent = _ent;
refs = 0;
}
};
typedef std::list<Line> List;
typedef typename List::iterator List_iterator;
List lru_list;
typedef std::map<u64, List_iterator> Map;
Map idx;
// return the line identified by id, or 0 if not in cache.
// mark it as the most recently used line.
Line* find_line(u64 id)
{
typename Map::const_iterator i = idx.find(id);
// not found
if(i == idx.end())
return 0;
// index points us to list entry
List_iterator l = i->second;
// mark l as the most recently used line.
lru_list.splice(lru_list.begin(), lru_list, l);
idx[l->id] = l;
return &*l;
}
};
//
// expansible hash table (linear probing)
//
// from VFS, not currently needed
#if 0
template<class T> class StringMap
{
public:
T* add(const char* fn, T& t)
{
const FnHash fn_hash = fnv_hash(fn);
t.name = fn;
std::pair<FnHash, T> item = std::make_pair(fn_hash, t);
std::pair<MapIt, bool> res;
res = map.insert(item);
if(!res.second)
{
debug_warn("add: already in container");
return 0;
}
// return address of user data (T) inserted into container.
return &((res.first)->second);
}
T* find(const char* fn)
{
const FnHash fn_hash = fnv_hash(fn);
MapIt it = map.find(fn_hash);
// O(log(size))
if(it == map.end())
return 0;
return &it->second;
}
size_t size() const
{
return map.size();
}
void clear()
{
map.clear();
}
private:
typedef std::map<FnHash, T> Map;
typedef typename Map::iterator MapIt;
Map map;
public:
class iterator
{
public:
iterator()
{}
iterator(typename StringMap<T>::MapIt _it)
{ it = _it; }
T& operator*() const
{ return it->second; }
T* operator->() const
{ return &**this; }
iterator& operator++() // pre
{ ++it; return (*this); }
bool operator==(const iterator& rhs) const
{ return it == rhs.it; }
bool operator!=(const iterator& rhs) const
{ return !(*this == rhs); }
protected:
typename StringMap<T>::MapIt it;
};
iterator begin()
{ return iterator(map.begin()); }
iterator end()
{ return iterator(map.end()); }
};
template<class Key, class Data> class PriMap
{
public:
int add(Key key, uint pri, Data& data)
{
Item item = std::make_pair(pri, data);
MapEntry ent = std::make_pair(key, item);
std::pair<MapIt, bool> ret;
ret = map.insert(ent);
// already in map
if(!ret.second)
{
MapIt it = ret.first;
Item item = it->second;
const uint old_pri = item.first;
Data& old_data = item.second;
// new data is of higher priority; replace older data
if(old_pri <= pri)
{
old_data = data;
return 0;
}
// new data is of lower priority; don't add
else
return 1;
}
return 0;
}
Data* find(Key key)
{
MapIt it = map.find(key);
if(it == map.end())
return 0;
return &it->second.second;
}
void clear()
{
map.clear();
}
private:
typedef std::pair<uint, Data> Item;
typedef std::pair<Key, Item> MapEntry;
typedef std::map<Key, Item> Map;
typedef typename Map::iterator MapIt;
Map map;
};
#endif // #if 0
#endif // #ifndef ADTS_H__