/* Copyright (C) 2023 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "TexturedLineRData.h" #include "graphics/ShaderProgram.h" #include "graphics/Terrain.h" #include "maths/Frustum.h" #include "maths/MathUtil.h" #include "maths/Quaternion.h" #include "ps/CStrInternStatic.h" #include "renderer/OverlayRenderer.h" #include "renderer/Renderer.h" #include "simulation2/Simulation2.h" #include "simulation2/system/SimContext.h" #include "simulation2/components/ICmpWaterManager.h" /* Note: this implementation uses g_VBMan directly rather than access it through the nicer VertexArray interface, * because it allows you to work with variable amounts of vertices and indices more easily. New code should prefer * to use VertexArray where possible, though. */ // static Renderer::Backend::IVertexInputLayout* CTexturedLineRData::GetVertexInputLayout() { const uint32_t stride = sizeof(CTexturedLineRData::SVertex); const std::array attributes{{ {Renderer::Backend::VertexAttributeStream::POSITION, Renderer::Backend::Format::R32G32B32_SFLOAT, offsetof(CTexturedLineRData::SVertex, m_Position), stride, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0}, {Renderer::Backend::VertexAttributeStream::UV0, Renderer::Backend::Format::R32G32_SFLOAT, offsetof(CTexturedLineRData::SVertex, m_UV), stride, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0}, {Renderer::Backend::VertexAttributeStream::UV1, Renderer::Backend::Format::R32G32_SFLOAT, offsetof(CTexturedLineRData::SVertex, m_UV), stride, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0} }}; return g_Renderer.GetVertexInputLayout(attributes); } void CTexturedLineRData::Render( Renderer::Backend::IDeviceCommandContext* deviceCommandContext, Renderer::Backend::IVertexInputLayout* vertexInputLayout, const SOverlayTexturedLine& line, Renderer::Backend::IShaderProgram* shader) { if (!m_VB || !m_VBIndices) return; // might have failed to allocate // -- render main line quad strip ---------------------- line.m_TextureBase->UploadBackendTextureIfNeeded(deviceCommandContext); line.m_TextureMask->UploadBackendTextureIfNeeded(deviceCommandContext); ENSURE(!m_VB->m_Owner->GetBuffer()->IsDynamic()); ENSURE(!m_VBIndices->m_Owner->GetBuffer()->IsDynamic()); deviceCommandContext->SetTexture( shader->GetBindingSlot(str_baseTex), line.m_TextureBase->GetBackendTexture()); deviceCommandContext->SetTexture( shader->GetBindingSlot(str_maskTex), line.m_TextureMask->GetBackendTexture()); deviceCommandContext->SetUniform( shader->GetBindingSlot(str_objectColor), line.m_Color.AsFloatArray()); deviceCommandContext->SetVertexInputLayout(vertexInputLayout); deviceCommandContext->SetVertexBuffer(0, m_VB->m_Owner->GetBuffer(), 0); deviceCommandContext->SetIndexBuffer(m_VBIndices->m_Owner->GetBuffer()); deviceCommandContext->DrawIndexed(m_VBIndices->m_Index, m_VBIndices->m_Count, 0); g_Renderer.GetStats().m_DrawCalls++; g_Renderer.GetStats().m_OverlayTris += m_VBIndices->m_Count/3; } void CTexturedLineRData::Update(const SOverlayTexturedLine& line) { m_VBIndices.Reset(); m_VB.Reset(); if (!line.m_SimContext) { debug_warn(L"[TexturedLineRData] No SimContext set for textured overlay line, cannot render (no terrain data)"); return; } float v = 0.f; std::vector vertices; std::vector indices; const size_t n = line.m_Coords.size(); // number of line points bool closed = line.m_Closed; ENSURE(n >= 2); // minimum needed to avoid errors (also minimum value to make sense, can't draw a line between 1 point) // In each iteration, p1 is the position of vertex i, p0 is i-1, p2 is i+1. // To avoid slightly expensive terrain computations we cycle these around and // recompute p2 at the end of each iteration. CVector3D p0; CVector3D p1(line.m_Coords[0].X, 0, line.m_Coords[0].Y); CVector3D p2(line.m_Coords[1].X, 0, line.m_Coords[1].Y); if (closed) // grab the ending point so as to close the loop p0 = CVector3D(line.m_Coords[n - 1].X, 0, line.m_Coords[n - 1].Y); else // we don't want to loop around and use the direction towards the other end of the line, so create an artificial p0 that // extends the p2 -> p1 direction, and use that point instead p0 = p1 + (p1 - p2); bool p1floating = false; bool p2floating = false; // Compute terrain heights, clamped to the water height (and remember whether // each point was floating on water, for normal computation later) // TODO: if we ever support more than one water level per map, recompute this per point CmpPtr cmpWaterManager(*line.m_SimContext, SYSTEM_ENTITY); float w = cmpWaterManager ? cmpWaterManager->GetExactWaterLevel(p0.X, p0.Z) : 0.f; const CTerrain& terrain = line.m_SimContext->GetTerrain(); p0.Y = terrain.GetExactGroundLevel(p0.X, p0.Z); if (p0.Y < w) p0.Y = w; p1.Y = terrain.GetExactGroundLevel(p1.X, p1.Z); if (p1.Y < w) { p1.Y = w; p1floating = true; } p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z); if (p2.Y < w) { p2.Y = w; p2floating = true; } for (size_t i = 0; i < n; ++i) { // For vertex i, compute bisector of lines (i-1)..(i) and (i)..(i+1) // perpendicular to terrain normal // Normal is vertical if on water, else computed from terrain CVector3D norm; if (p1floating) norm = CVector3D(0, 1, 0); else norm = terrain.CalcExactNormal(p1.X, p1.Z); CVector3D b = ((p1 - p0).Normalized() + (p2 - p1).Normalized()).Cross(norm); // Adjust bisector length to match the line thickness, along the line's width float l = b.Dot((p2 - p1).Normalized().Cross(norm)); if (fabs(l) > 0.000001f) // avoid unlikely divide-by-zero b *= line.m_Thickness / l; // Push vertices and indices for each quad in GL_TRIANGLES order. The two triangles of each quad are indexed using // the winding orders (BR, BL, TR) and (TR, BL, TL) (where BR is bottom-right of this iteration's quad, TR top-right etc). SVertex vertex1(p1 + b + norm * OverlayRenderer::OVERLAY_VOFFSET, CVector2D(0.f, v)); SVertex vertex2(p1 - b + norm * OverlayRenderer::OVERLAY_VOFFSET, CVector2D(1.f, v)); vertices.push_back(vertex1); vertices.push_back(vertex2); u16 vertexCount = static_cast(vertices.size()); u16 index1 = vertexCount - 2; // index of vertex1 in this iteration (TR of this quad) u16 index2 = vertexCount - 1; // index of the vertex2 in this iteration (TL of this quad) if (i == 0) { // initial two vertices to continue building triangles from (n must be >= 2 for this to work) indices.push_back(index1); indices.push_back(index2); } else { u16 index1Prev = vertexCount - 4; // index of the vertex1 in the previous iteration (BR of this quad) u16 index2Prev = vertexCount - 3; // index of the vertex2 in the previous iteration (BL of this quad) ENSURE(index1Prev < vertexCount); ENSURE(index2Prev < vertexCount); // Add two corner points from last iteration and join with one of our own corners to create triangle 1 // (don't need to do this if i == 1 because i == 0 are the first two ones, they don't need to be copied) if (i > 1) { indices.push_back(index1Prev); indices.push_back(index2Prev); } indices.push_back(index1); // complete triangle 1 // create triangle 2, specifying the adjacent side's vertices in the opposite order from triangle 1 indices.push_back(index1); indices.push_back(index2Prev); indices.push_back(index2); } // alternate V coordinate for debugging v = 1 - v; // cycle the p's and compute the new p2 p0 = p1; p1 = p2; p1floating = p2floating; // if in closed mode, wrap around the coordinate array for p2 -- otherwise, extend linearly if (!closed && i == n-2) // next iteration is the last point of the line, so create an artificial p2 that extends the p0 -> p1 direction p2 = p1 + (p1 - p0); else p2 = CVector3D(line.m_Coords[(i + 2) % n].X, 0, line.m_Coords[(i + 2) % n].Y); p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z); if (p2.Y < w) { p2.Y = w; p2floating = true; } else p2floating = false; } if (closed) { // close the path if (n % 2 == 0) { u16 vertexCount = static_cast(vertices.size()); indices.push_back(vertexCount - 2); indices.push_back(vertexCount - 1); indices.push_back(0); indices.push_back(0); indices.push_back(vertexCount - 1); indices.push_back(1); } else { // add two vertices to have the good UVs for the last quad SVertex vertex1(vertices[0].m_Position, CVector2D(0.f, 1.f)); SVertex vertex2(vertices[1].m_Position, CVector2D(1.f, 1.f)); vertices.push_back(vertex1); vertices.push_back(vertex2); u16 vertexCount = static_cast(vertices.size()); indices.push_back(vertexCount - 4); indices.push_back(vertexCount - 3); indices.push_back(vertexCount - 2); indices.push_back(vertexCount - 2); indices.push_back(vertexCount - 3); indices.push_back(vertexCount - 1); } } else { // Create start and end caps. On either end, this is done by taking the centroid between the last and second-to-last pair of // vertices that was generated along the path (i.e. the vertex1's and vertex2's from above), taking a directional vector // between them, and drawing the line cap in the plane given by the two butt-end corner points plus said vector. std::vector capIndices; std::vector capVertices; // create end cap CreateLineCap( line, // the order of these vertices is important here, swapping them produces caps at the wrong side vertices[vertices.size()-2].m_Position, // top-right vertex of last quad vertices[vertices.size()-1].m_Position, // top-left vertex of last quad // directional vector between centroids of last vertex pair and second-to-last vertex pair (Centroid(vertices[vertices.size()-2], vertices[vertices.size()-1]) - Centroid(vertices[vertices.size()-4], vertices[vertices.size()-3])).Normalized(), line.m_EndCapType, capVertices, capIndices ); for (unsigned i = 0; i < capIndices.size(); i++) capIndices[i] += static_cast(vertices.size()); vertices.insert(vertices.end(), capVertices.begin(), capVertices.end()); indices.insert(indices.end(), capIndices.begin(), capIndices.end()); capIndices.clear(); capVertices.clear(); // create start cap CreateLineCap( line, // the order of these vertices is important here, swapping them produces caps at the wrong side vertices[1].m_Position, vertices[0].m_Position, // directional vector between centroids of first vertex pair and second vertex pair (Centroid(vertices[1], vertices[0]) - Centroid(vertices[3], vertices[2])).Normalized(), line.m_StartCapType, capVertices, capIndices ); for (unsigned i = 0; i < capIndices.size(); i++) capIndices[i] += static_cast(vertices.size()); vertices.insert(vertices.end(), capVertices.begin(), capVertices.end()); indices.insert(indices.end(), capIndices.begin(), capIndices.end()); } if (vertices.empty() || indices.empty()) return; // Indices for triangles, so must be multiple of 3. ENSURE(indices.size() % 3 == 0); m_BoundingBox = CBoundingBoxAligned(); for (const SVertex& vertex : vertices) m_BoundingBox += vertex.m_Position; m_VB = g_VBMan.AllocateChunk( sizeof(SVertex), vertices.size(), Renderer::Backend::IBuffer::Type::VERTEX, false); // Allocation might fail (e.g. due to too many vertices). if (m_VB) { // Copy data into backend buffer. m_VB->m_Owner->UpdateChunkVertices(m_VB.Get(), &vertices[0]); for (size_t k = 0; k < indices.size(); ++k) indices[k] += static_cast(m_VB->m_Index); m_VBIndices = g_VBMan.AllocateChunk( sizeof(u16), indices.size(), Renderer::Backend::IBuffer::Type::INDEX, false); if (m_VBIndices) m_VBIndices->m_Owner->UpdateChunkVertices(m_VBIndices.Get(), &indices[0]); } } void CTexturedLineRData::CreateLineCap(const SOverlayTexturedLine& line, const CVector3D& corner1, const CVector3D& corner2, const CVector3D& lineDirectionNormal, SOverlayTexturedLine::LineCapType endCapType, std::vector& verticesOut, std::vector& indicesOut) { if (endCapType == SOverlayTexturedLine::LINECAP_FLAT) return; // no action needed, this is the default // When not in closed mode, we've created artificial points for the start- and endpoints that extend the line in the // direction of the first and the last segment, respectively. Thus, we know both the start and endpoints have perpendicular // butt endings, i.e. the end corner vertices on either side of the line extend perpendicularly from the segment direction. // That is to say, when viewed from the top, we will have something like // . // this: and not like this: /| // ----+ / | // | / . // | / // ----+ / // int roundCapPoints = 8; // amount of points to sample along the semicircle for rounded caps (including corner points) float radius = line.m_Thickness; CVector3D centerPoint = (corner1 + corner2) * 0.5f; SVertex centerVertex(centerPoint, CVector2D(0.5f, 0.5f)); u16 indexOffset = static_cast(verticesOut.size()); // index offset in verticesOut from where we start adding our vertices switch (endCapType) { case SOverlayTexturedLine::LINECAP_SHARP: { roundCapPoints = 3; // creates only one point directly ahead radius *= 1.5f; // make it a bit sharper (note that we don't use the radius for the butt-end corner points so it should be ok) centerVertex.m_UV.X = 0.480f; // slight visual correction to make the texture match up better at the corner points } FALLTHROUGH; case SOverlayTexturedLine::LINECAP_ROUND: { // Draw a rounded line cap in the 3D plane of the line specified by the two corner points and the normal vector of the // line's direction. The terrain normal at the centroid between the two corner points is perpendicular to this plane. // The way this works is by taking a vector from the corner points' centroid to one of the corner points (which is then // of radius length), and rotate it around the terrain normal vector in that centroid. This will rotate the vector in // the line's plane, producing the desired rounded cap. // To please OpenGL's winding order, this angle needs to be negated depending on whether we start rotating from // the (center -> corner1) or (center -> corner2) vector. For the (center -> corner2) vector, we apparently need to use // the negated angle. float stepAngle = -(float)(M_PI/(roundCapPoints-1)); // Push the vertices in triangle fan order (easy to generate GL_TRIANGLES indices for afterwards) // Note that we're manually adding the corner vertices instead of having them be generated by the rotating vector. // This is because we want to support an overly large radius to make the sharp line ending look sharper. verticesOut.push_back(centerVertex); verticesOut.push_back(SVertex(corner2, CVector2D())); // Get the base vector that we will incrementally rotate in the cap plane to produce the radial sample points. // Normally corner2 - centerPoint would suffice for this since it is of radius length, but we want to support custom // radii to support tuning the 'sharpness' of sharp end caps (see above) CVector3D rotationBaseVector = (corner2 - centerPoint).Normalized() * radius; // Calculate the normal vector of the plane in which we're going to be drawing the line cap. This is the vector that // is perpendicular to both baseVector and the 'lineDirectionNormal' vector indicating the direction of the line. // Note that we shouldn't use terrain->CalcExactNormal() here because if the line is being rendered on top of water, // then CalcExactNormal will return the normal vector of the terrain that's underwater (which can be quite funky). CVector3D capPlaneNormal = lineDirectionNormal.Cross(rotationBaseVector).Normalized(); for (int i = 1; i < roundCapPoints - 1; ++i) { // Rotate the centerPoint -> corner vector by i*stepAngle radians around the cap plane normal at the center point. CQuaternion quatRotation; quatRotation.FromAxisAngle(capPlaneNormal, i * stepAngle); CVector3D worldPos3D = centerPoint + quatRotation.Rotate(rotationBaseVector); // Let v range from 0 to 1 as we move along the semi-circle, keep u fixed at 0 (i.e. curve the left vertical edge // of the texture around the edge of the semicircle) float u = 0.f; float v = Clamp((i / static_cast(roundCapPoints - 1)), 0.f, 1.f); // pos, u, v verticesOut.push_back(SVertex(worldPos3D, CVector2D(u, v))); } // connect back to the other butt-end corner point to complete the semicircle verticesOut.push_back(SVertex(corner1, CVector2D(0.f, 1.f))); // now push indices in GL_TRIANGLES order; vertices[indexOffset] is the center vertex, vertices[indexOffset + 1] is the // first corner point, then a bunch of radial samples, and then at the end we have the other corner point again. So: for (int i=1; i < roundCapPoints; ++i) { indicesOut.push_back(indexOffset); // center vertex indicesOut.push_back(indexOffset + i); indicesOut.push_back(indexOffset + i + 1); } } break; case SOverlayTexturedLine::LINECAP_SQUARE: { // Extend the (corner1 -> corner2) vector along the direction normal and draw a square line ending consisting of // three triangles (sort of like a triangle fan) // NOTE: The order in which the vertices are pushed out determines the visibility, as they // are rendered only one-sided; the wrong order of vertices will make the cap visible only from the bottom. verticesOut.push_back(centerVertex); verticesOut.push_back(SVertex(corner2, CVector2D())); verticesOut.push_back(SVertex(corner2 + (lineDirectionNormal * (line.m_Thickness)), CVector2D(0.f, 0.33333f))); // extend butt corner point 2 along the normal vector verticesOut.push_back(SVertex(corner1 + (lineDirectionNormal * (line.m_Thickness)), CVector2D(0.f, 0.66666f))); // extend butt corner point 1 along the normal vector verticesOut.push_back(SVertex(corner1, CVector2D(0.f, 1.0f))); // push butt corner point 1 for (int i=1; i < 4; ++i) { indicesOut.push_back(indexOffset); // center point indicesOut.push_back(indexOffset + i); indicesOut.push_back(indexOffset + i + 1); } } break; default: break; } } bool CTexturedLineRData::IsVisibleInFrustum(const CFrustum& frustum) const { return frustum.IsBoxVisible(m_BoundingBox); }