1
0
forked from 0ad/0ad
0ad/source/lib/res/zip.cpp
2004-08-11 20:21:42 +00:00

1141 lines
28 KiB
C++
Executable File

// Zip archiving on top of ZLib.
//
// Copyright (c) 2004 Jan Wassenberg
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// Contact info:
// Jan.Wassenberg@stud.uni-karlsruhe.de
// http://www.stud.uni-karlsruhe.de/~urkt/
// components:
// - z_*: Zip-specific code
// passes the list of files in an archive to lookup.
// - lookup_*: file lookup
// per archive: return file info (e.g. offset, size), given filename.
// - ZArchive_*: Handle-based container for archive info
// owns archive file and its lookup mechanism.
// - inf_*: in-memory inflate routines (zlib wrapper)
// decompresses blocks from file_io callback.
// - zip_*: file from Zip archive
// uses lookup to get file information; holds inflate state.
// - sync and async I/O
// uses file_* and inf_*.
// - file mapping
#include "precompiled.h"
#include "lib.h"
#include "zip.h"
#include "res.h"
#include <assert.h>
// provision for removing all ZLib code (all inflate calls will fail).
// used for checking DLL dependency; might also simulate corrupt Zip files.
//#define NO_ZLIB
#ifndef NO_ZLIB
# define ZLIB_WINAPI
# include <zlib.h>
# ifdef _MSC_VER
# ifdef NDEBUG
# pragma comment(lib, "zlib1.lib")
# else
# pragma comment(lib, "zlib1d.lib")
# endif
# endif
#endif
#include <map>
///////////////////////////////////////////////////////////////////////////////
//
// z_*: Zip-specific code
// passes the list of files in an archive to lookup.
//
///////////////////////////////////////////////////////////////////////////////
// convenience container for location / size of file in archive.
struct ZLoc
{
off_t ofs;
off_t csize; // = 0 if not compressed
off_t ucsize;
// why csize?
// file I/O may be N-buffered, so it's good to know when the raw data
// stops (or else we potentially overshoot by N-1 blocks),
// but not critical, since Zip files are compressed individually.
// (if we read too much, it's ignored by inflate).
//
// we also need a way to check if a file is compressed (e.g. to fail
// mmap requests if the file is compressed). packing a bit in ofs or
// ucsize is error prone and ugly (1 bit less won't hurt though).
// any other way will mess up the nice 2^n byte size anyway, so
// might as well store csize.
};
// Zip file data structures and signatures
static const char cdfh_id[] = "PK\1\2";
static const char lfh_id[] = "PK\3\4";
static const char ecdr_id[] = "PK\5\6";
const size_t CDFH_SIZE = 46;
const size_t LFH_SIZE = 30;
const size_t ECDR_SIZE = 22;
static inline int z_validate(const void* const file, const size_t size)
{
// make sure it's big enough to check the header and for
// z_find_ecdr to succeed (if smaller, it's obviously bogus).
if(size < 22)
return -1;
// check "header" (first LFH) signature
return (*(u32*)file == *(u32*)&lfh_id)? 0 : -1;
}
// find end of central dir record in file (loaded or mapped).
// z_validate ensures size >= 22.
static int z_find_ecdr(const void* const file, const size_t size, const u8*& ecdr_)
{
const u8* ecdr = (const u8*)file + size - ECDR_SIZE;
// early out: check expected case (ECDR at EOF; no file comment)
if(*(u32*)ecdr == *(u32*)&ecdr_id)
goto found_ecdr;
{
// scan the last 66000 bytes of file for ecdr_id signature
// (zip comment <= 65535 bytes, sizeof(ECDR) = 22, add some for safety)
// if the zip file is < 66000 bytes, scan the whole file.
size_t bytes_left = MIN(66000, size);
ecdr = (const u8*)file + size - bytes_left;
while(bytes_left >= 4)
{
if(*(u32*)ecdr == *(u32*)&ecdr_id)
goto found_ecdr;
// check next 4 bytes (unaligned!!)
ecdr++;
bytes_left--;
}
// reached EOF and still haven't found the ECDR identifier.
ecdr_ = 0;
return -1;
}
found_ecdr:
ecdr_ = ecdr;
return 0;
}
#ifdef PARANOIA
// make sure the LFH fields match those passed (from the CDFH).
// only used in PARANOIA builds - costs time when opening archives.
static int z_verify_lfh(const void* const file, const off_t lfh_ofs, const off_t file_ofs)
{
assert(lfh_ofs < file_ofs); // header comes before file
const u8* lfh = (const u8*)file + lfh_ofs;
if(*(u32*)lfh != *(u32*)lfh_id)
{
debug_warn("LFH corrupt! (signature doesn't match)");
return -1;
}
const u16 lfh_fn_len = read_le16(lfh+26);
const u16 lfh_e_len = read_le16(lfh+28);
const off_t lfh_file_ofs = lfh_ofs + LFH_SIZE + lfh_fn_len + lfh_e_len;
if(file_ofs != lfh_file_ofs)
{
debug_warn("warning: CDFH and LFH data differ! normal builds will"\
"return incorrect file offsets. check Zip file!");
return -1;
}
return 0;
}
#endif // #ifdef PARANOIA
// extract information from the current Central Directory File Header;
// advance cdfh to point to the next; return -1 on unrecoverable error,
// 0 on success (<==> output fields are valid), > 0 if file is invalid.
static int z_read_cdfh(const u8*& cdfh, const char*& fn, size_t& fn_len, ZLoc* const loc)
{
if(*(u32*)cdfh != *(u32*)cdfh_id)
{
debug_warn("CDFH corrupt! (signature doesn't match)");
goto skip_file;
}
{
const u8 method = cdfh[10];
u32 csize_ = read_le32(cdfh+20);
const u32 ucsize_ = read_le32(cdfh+24);
const u16 fn_len_ = read_le16(cdfh+28);
const u16 e_len = read_le16(cdfh+30);
const u16 c_len = read_le16(cdfh+32);
const u32 lfh_ofs = read_le32(cdfh+42);
const char* fn_ = (const char*)cdfh+CDFH_SIZE;
// not 0-terminated!
// compression method: neither deflated nor stored
if(method & ~8)
{
debug_warn("warning: unknown compression method");
goto skip_file;
}
// tell zfile_compressed that the file is uncompressed,
// by setting csize_ to 0.
if(method == 0)
csize_ = 0;
fn = fn_;
fn_len = fn_len_;
loc->ofs = (off_t)(lfh_ofs + LFH_SIZE + fn_len_ + e_len);
loc->csize = (off_t)csize_;
loc->ucsize = (off_t)ucsize_;
// performance issue: want to avoid seeking between LFHs and central dir.
// would be safer to calculate file offset from the LFH, since its
// filename / extra data fields may differ WRT the CDFH version.
// we don't bother checking for this in normal builds: if they were
// to be different, we'd notice: headers of files would end up corrupted.
#ifdef PARANOIA
if(!z_verify_lfh(file, lfh_ofs, file_ofs))
goto skip_file;
#endif
cdfh += CDFH_SIZE + fn_len + e_len + c_len;
return 0;
}
// file was invalid somehow; try to seek forward to the next CDFH
skip_file:
// scan for next CDFH (look for signature)
for(int i = 0; i < 256; i++)
{
if(*(u32*)cdfh == *(u32*)cdfh_id)
goto found_next_cdfh;
cdfh++;
}
// next CDFH not found. caller must abort
return -1;
// file was skipped, but we have the next CDFH
found_next_cdfh:
return 1;
}
// fn (filename) is not necessarily 0-terminated!
// loc is only valid during the callback! must be copied or saved.
typedef int(*CDFH_CB)(const uintptr_t user, const i32 idx, const char* const fn, const size_t fn_len, const ZLoc* const loc);
// go through central directory of the Zip file (loaded or mapped into memory);
// call back for each file.
//
// HACK: call back with negative index the first time; its abs. value is
// the number of files in the archive. lookup needs to know this so it can
// allocate memory. having lookup_init call zip_get_num_files and then
// zip_enum_files would require passing around a ZipInfo struct,
// or searching for the ECDR twice - both ways aren't nice.
static int z_enum_files(const void* const file, const size_t size, const CDFH_CB cb, const uintptr_t user)
{
// find End of Central Directory Record
const u8* ecdr;
CHECK_ERR(z_find_ecdr(file, size, ecdr));
// call back with number of files in archive
const i32 num_files = read_le16(ecdr+10);
// .. callback expects -num_files < 0.
// if it's 0, the callback would treat it as an index => crash.
if(!num_files)
return -1;
CHECK_ERR(cb(user, -num_files, 0, 0, 0));
// call back for each (valid) CDFH entry
const u32 cd_ofs = read_le32(ecdr+16);
const u8* cdfh = (const u8*)file + cd_ofs;
// pointer is advanced in zip_read_cdfh
for(i32 idx = 0; idx < num_files; idx++)
{
const char* fn;
size_t fn_len;
ZLoc loc;
int err = z_read_cdfh(cdfh, fn, fn_len, &loc);
// .. non-recoverable error reading dir
if(err < 0)
return err;
// .. file was skipped (e.g. invalid compression format)
// call back with 0 params; don't skip the file, so that
// all indices are valid.
if(err > 0)
cb(user, idx, 0, 0, 0);
// .. file valid.
else
cb(user, idx, fn, fn_len, &loc);
}
return 0;
}
///////////////////////////////////////////////////////////////////////////////
//
// lookup_*: file lookup
// per archive: return file info (e.g. offset, size), given filename.
//
///////////////////////////////////////////////////////////////////////////////
// current file-lookup implementation:
// store each file's ZEnt in an array. check the next entry first; if that's
// not what we're looking for, find its index via map<filename_hash, index>.
//
// rationale:
// - we don't export a "key" (currently array index) that would allow faster
// file lookup. this would only be useful if higher-level code were to
// store the key and use it more than once. also, lookup is currently fast
// enough. finally, this would also make our file enumerate callback
// incompatible with the others (due to the extra key param).
//
// - we don't bother with a directory tree to speed up lookup. the above
// is currently fast enough, and will be O(1) if the files are arranged
// in order of access (which would also reduce seeks).
// this could easily be added though, if need be; Zip files include a CDFH
// entry for each dir.
struct ZEnt
{
const char* fn; // currently allocated individually
ZLoc loc;
};
typedef std::map<FnHash, i32> LookupIdx;
typedef LookupIdx::iterator LookupIdxIt;
// per-archive information for mapping filename -> file info
struct LookupInfo
{
ZEnt* ents;
FnHash* fn_hashes;
// split out of ZEnt for more efficient search
// (=> ZEnt is power-of-2, back-to-back fn_hashes)
//
// currently both share one memory allocation; only mem_free() ents!
i32 num_files;
i32 next_file;
// for last-file-opened optimization.
// we store index of next file instead of the last one opened
// to avoid trouble on first call (don't want last == -1).
// don't know size of std::map, and this struct is
// included in a control block (ZArchive).
// allocate dynamically to be safe.
LookupIdx* idx;
};
// support for case-insensitive filenames: the FNV hash of each
// filename string is saved in lookup_add_file_cb and searched for by
// lookup_get_file_info. in both cases, we convert a temporary to
// lowercase before hashing it.
static void strcpy_lower(char* dst, const char* src)
{
int c;
do
{
c = *src++;
*dst++ = tolower(c);
}
while(c != '\0');
}
// add file <fn> to the lookup data structure.
// called from z_enum_files in order (0 <= idx < num_files).
// the first call notifies us of # files, so we can allocate memory.
//
// notes:
// - fn (filename) is not necessarily 0-terminated!
// - loc is only valid during the callback! must be copied or saved.
static int lookup_add_file_cb(const uintptr_t user, const i32 idx, const char* const fn, const size_t fn_len, const ZLoc* const loc)
{
LookupInfo* li = (LookupInfo*)user;
// HACK: on first call, idx is negative and tells us how many
// files are in the archive (so we can allocate memory).
// see z_enum_files for why it's done this way.
if(idx < 0)
{
const i32 num_files = -idx;
// both arrays in one allocation (more efficient)
const size_t ents_size = (num_files * sizeof(ZEnt));
const size_t array_size = ents_size + (num_files * sizeof(FnHash));
void* p = mem_alloc(array_size, 4*KB);
if(!p)
return ERR_NO_MEM;
li->num_files = num_files;
li->ents = (ZEnt*)p;
li->fn_hashes = (FnHash*)((char*)p + ents_size);
return 0;
}
ZEnt* ent = li->ents + idx;
char lc_fn[PATH_MAX];
strcpy_lower(lc_fn, fn);
FnHash fn_hash = fnv_hash(lc_fn, fn_len);
(*li->idx)[fn_hash] = idx;
li->fn_hashes[idx] = fn_hash;
// valid file - write out its info.
if(loc)
{
// copy filename, so we can 0-terminate it
ent->fn = (const char*)malloc(fn_len+1);
if(!ent->fn)
return ERR_NO_MEM;
strncpy((char*)ent->fn, fn, fn_len);
// 0-terminate and strip trailing '/'
char* end = (char*)ent->fn + fn_len-1;
if(*end != '/')
end++;
*end = '\0';
ent->loc = *loc;
}
// invalid file / error reading its dir entry: zero its file info.
// (don't skip it to make sure all indices are valid).
else
memset(ent, 0, sizeof(ZEnt));
return 0;
}
// initialize lookup data structure for Zip archive <file>
static int lookup_init(LookupInfo* const li, const void* const file, const size_t size)
{
int err;
// check if it's even a Zip file.
// the VFS blindly opens files when mounting; it needs to open
// all archives, but doesn't know their extension (e.g. ".pk3").
err = z_validate(file, size);
if(err < 0) // don't CHECK_ERR - this can happen often.
return err;
// all other fields are initialized in lookup_add_file_cb
li->next_file = 0;
li->idx = new LookupIdx;
err = z_enum_files(file, size, lookup_add_file_cb, (uintptr_t)li);
if(err < 0)
{
delete li->idx;
return err;
}
return 0;
}
// free lookup data structure.
// (no use-after-free checking - that's handled by the VFS)
static int lookup_free(LookupInfo* const li)
{
// free memory allocated for filenames
for(i32 i = 0; i < li->num_files; i++)
{
free((void*)li->ents[i].fn);
li->ents[i].fn = 0;
}
li->num_files = 0;
delete li->idx;
// frees both ents and fn_hashes! (they share an allocation)
return mem_free(li->ents);
}
// return file information of file <fn>.
static int lookup_get_file_info(LookupInfo* const li, const char* fn, ZLoc* const loc)
{
char lc_fn[PATH_MAX];
strcpy_lower(lc_fn, fn);
const FnHash fn_hash = fnv_hash(lc_fn);
const FnHash* fn_hashes = li->fn_hashes;
const i32 num_files = li->num_files;
i32 i = li->next_file;
// .. next_file marker is at the end of the array, or
// its entry isn't what we're looking for: consult index
if(i >= num_files || fn_hashes[i] != fn_hash)
{
LookupIdxIt it = li->idx->find(fn_hash);
// not found
if(it == li->idx->end())
return ERR_FILE_NOT_FOUND;
i = it->second;
assert(0 <= i && i < li->num_files);
}
li->next_file = i+1;
const ZEnt* const ent = &li->ents[i];
fn = ent->fn;
*loc = ent->loc;
return 0;
}
static int lookup_enum_files(LookupInfo* const li, FileCB cb, uintptr_t user)
{
const ZEnt* ent = li->ents;
for(i32 i = 0; i < li->num_files; i++, ent++)
{
ssize_t size = (ssize_t)ent->loc.ucsize;
if(size == 0) // it's a directory
size = -1;
CHECK_ERR(cb(ent->fn, size, user));
// pass in complete path (see file_enum rationale).
}
return 0;
}
///////////////////////////////////////////////////////////////////////////////
//
// ZArchive_*: Handle-based container for archive info
// owns archive file and its lookup mechanism.
//
///////////////////////////////////////////////////////////////////////////////
struct ZArchive
{
File f;
LookupInfo li;
// problem:
// if ZArchive_reload aborts due to file_open failing, ZArchive_dtor
// is called by h_alloc, and file_close complains the File is
// invalid (wasn't open). this happens if e.g. vfs_mount blindly
// tries to open a directory as an archive.
// workaround:
// only free the above if ZArchive_reload succeeds, i.e. is_open.
// note:
// if lookup_init fails after file_open opened the file,
// we wouldn't file_close in the dtor,
// but it's taken care of by ZArchive_reload.
bool is_open;
};
H_TYPE_DEFINE(ZArchive);
static void ZArchive_init(ZArchive* za, va_list args)
{
UNUSED(za);
UNUSED(args);
}
static void ZArchive_dtor(ZArchive* za)
{
if(za->is_open)
{
file_close(&za->f);
lookup_free(&za->li);
za->is_open = false;
}
}
static int ZArchive_reload(ZArchive* za, const char* fn, Handle h)
{
UNUSED(h);
int err;
err = file_open(fn, 0, &za->f);
if(err < 0)
// don't complain - this happens when vfs_mount blindly
// zip_archive_opens a dir.
return err;
// map
void* file;
size_t size;
err = file_map(&za->f, file, size);
if(err < 0)
goto exit_close;
err = lookup_init(&za->li, file, size);
if(err < 0)
goto exit_unmap_close;
// we map the file only for convenience when loading;
// extraction is via aio (faster, better mem use).
file_unmap(&za->f);
za->is_open = true;
return 0;
exit_unmap_close:
file_unmap(&za->f);
exit_close:
file_close(&za->f);
// don't complain here either; this happens when vfs_mount
// zip_archive_opens an invalid file that's in a mount point dir.
return err;
}
// open and return a handle to the zip archive indicated by <fn>
inline Handle zip_archive_open(const char* const fn)
{
return h_alloc(H_ZArchive, fn);
}
// close the archive <ha> and set ha to 0
inline int zip_archive_close(Handle& ha)
{
return h_free(ha, H_ZArchive);
}
// call <cb>, passing <user>, for all files in archive <ha>
int zip_enum(const Handle ha, const FileCB cb, const uintptr_t user)
{
H_DEREF(ha, ZArchive, za);
return lookup_enum_files(&za->li, cb, user);
}
///////////////////////////////////////////////////////////////////////////////
//
// inf_*: in-memory inflate routines (zlib wrapper)
// decompresses blocks from file_io callback.
//
///////////////////////////////////////////////////////////////////////////////
uintptr_t inf_init_ctx()
{
#ifdef NO_ZLIB
return 0;
#else
// allocate ZLib stream
const size_t size = round_up(sizeof(z_stream), 32);
// be nice to allocator
z_stream* stream = (z_stream*)calloc(size, 1);
if(inflateInit2(stream, -MAX_WBITS) != Z_OK)
// -MAX_WBITS indicates no zlib header present
return 0;
return (uintptr_t)stream;
#endif
}
// we will later provide data that is to be unzipped into <out>.
int inf_start_read(uintptr_t ctx, void* out, size_t out_size)
{
#ifdef NO_ZLIB
return -1;
#else
if(!ctx)
return ERR_INVALID_PARAM;
z_stream* stream = (z_stream*)ctx;
if(stream->next_out || stream->avail_out)
{
debug_warn("zip_start_read: ctx already in use!");
return -1;
}
stream->next_out = (Byte*)out;
stream->avail_out = (uInt)out_size;
return 0;
#endif
}
// unzip into output buffer. returns bytes written
// (may be 0, if not enough data is passed in), or < 0 on error.
ssize_t inf_inflate(uintptr_t ctx, void* in, size_t in_size)
{
#ifdef NO_ZLIB
return -1;
#else
if(!ctx)
return ERR_INVALID_PARAM;
z_stream* stream = (z_stream*)ctx;
size_t prev_avail_out = stream->avail_out;
stream->avail_in = (uInt)in_size;
stream->next_in = (Byte*)in;
int err = inflate(stream, Z_SYNC_FLUSH);
// check+return how much actual data was read
//
// note: zlib may not always output data, e.g. if passed very little
// data in one block (due to misalignment). return 0 ("no data output"),
// which doesn't abort the read.
size_t avail_out = stream->avail_out;
assert(avail_out <= prev_avail_out);
// make sure output buffer size didn't magically increase
ssize_t nread = (ssize_t)(prev_avail_out - avail_out);
if(!nread)
return (err < 0)? err : 0;
// try to pass along the ZLib error code, but make sure
// it isn't treated as 'bytes output', i.e. > 0.
return nread;
#endif
}
// unzip complete; all input and output data should have been consumed.
int inf_finish_read(uintptr_t ctx)
{
#ifdef NO_ZLIB
return -1;
#else
if(!ctx)
return ERR_INVALID_PARAM;
z_stream* stream = (z_stream*)ctx;
if(stream->avail_in || stream->avail_out)
{
debug_warn("zip_finish_read: input or output buffer has space remaining");
stream->avail_in = stream->avail_out = 0;
return -1;
}
stream->next_in = 0;
stream->next_out = 0;
return 0;
#endif
}
int inf_free_ctx(uintptr_t ctx)
{
#ifdef NO_ZLIB
return -1;
#else
if(!ctx)
return ERR_INVALID_PARAM;
z_stream* stream = (z_stream*)ctx;
assert(stream->next_out == 0);
inflateEnd(stream);
free(stream);
return 0;
#endif
}
///////////////////////////////////////////////////////////////////////////////
//
// zip_*: file from Zip archive
// uses lookup to get file information; holds inflate state.
//
///////////////////////////////////////////////////////////////////////////////
enum ZFileFlags
{
// the ZFile has been successfully zip_map-ped.
// used to make sure the archive's mmap refcount remains balanced,
// i.e. no one double-frees the mapping.
ZF_HAS_MAPPING = 0x4000
};
// marker for ZFile struct, to make sure it's valid
#ifdef PARANOIA
static const u32 ZFILE_MAGIC = FOURCC('Z','F','I','L');
#endif
static int zfile_validate(uint line, ZFile* zf)
{
const char* msg = "";
int err = -1;
if(!zf)
{
msg = "ZFile* parameter = 0";
err = ERR_INVALID_PARAM;
}
#ifdef PARANOIA
else if(zf->magic != ZFILE_MAGIC)
msg = "ZFile corrupted (magic field incorrect)";
#endif
#ifndef NDEBUG
else if(!h_user_data(zf->ha, H_ZArchive))
msg = "invalid archive handle";
#endif
else if(!zf->ucsize)
msg = "ucsize = 0";
else if(!zf->inf_ctx)
msg = "read context invalid";
// everything is OK
else
return 0;
// failed somewhere - err is the error code,
// or -1 if not set specifically above.
debug_out("zfile_validate at line %d failed: %s\n", line, msg);
debug_warn("zfile_validate failed");
return err;
}
#define CHECK_ZFILE(f)\
do\
{\
int err = zfile_validate(__LINE__, f);\
if(err < 0)\
return err;\
}\
while(0);
// convenience function, allows implementation change in ZFile.
// note that size == ucsize isn't foolproof, and adding a flag to
// ofs or size is ugly and error-prone.
// no error checking - always called from functions that check zf.
static inline bool zfile_compressed(ZFile* zf)
{
return zf->csize != 0;
}
// return file information for <fn> in archive <ha>
int zip_stat(Handle ha, const char* fn, struct stat* s)
{
// zero output param in case we fail below.
memset(s, 0, sizeof(struct stat));
H_DEREF(ha, ZArchive, za);
LookupInfo* li = &za->li;
ZLoc loc;
CHECK_ERR(lookup_get_file_info(li, fn, &loc));
s->st_size = loc.ucsize;
return 0;
}
int zip_open(const Handle ha, const char* fn, ZFile* zf)
{
H_DEREF(ha, ZArchive, za);
LookupInfo* li = (LookupInfo*)&za->li;
// zero output param in case we fail below.
memset(zf, 0, sizeof(ZFile));
if(!zf)
goto invalid_zf;
// jump to CHECK_ZFILE post-check, which will handle this.
{
H_DEREF(ha, ZArchive, za);
LookupInfo* li = (LookupInfo*)&za->li;
ZLoc loc;
// don't want ZFile to contain a ZEnt struct -
// its ucsize member must be 'loose' for compatibility with File.
// => need to copy ZEnt fields into ZFile.
CHECK_ERR(lookup_get_file_info(li, fn, &loc));
#ifdef PARANOIA
zf->magic = ZFILE_MAGIC;
#endif
zf->ucsize = loc.ucsize;
zf->ofs = loc.ofs;
zf->csize = loc.csize;
zf->ha = ha;
zf->inf_ctx = inf_init_ctx();
}
invalid_zf:
CHECK_ZFILE(zf);
return 0;
}
int zip_close(ZFile* zf)
{
CHECK_ZFILE(zf);
// remaining ZFile fields don't need to be freed/cleared
return inf_free_ctx(zf->inf_ctx);
}
///////////////////////////////////////////////////////////////////////////////
//
// sync and async I/O
// uses file_* and inf_*.
//
///////////////////////////////////////////////////////////////////////////////
// note: we go to a bit of trouble to make sure the buffer we allocated
// (if p == 0) is freed when the read fails.
ssize_t zip_read(ZFile* zf, off_t raw_ofs, size_t size, void** p)
{
CHECK_ZFILE(zf);
ssize_t err = -1;
ssize_t raw_bytes_read;
ZArchive* za = H_USER_DATA(zf->ha, ZArchive);
if(!za)
return ERR_INVALID_HANDLE;
const off_t ofs = zf->ofs + raw_ofs;
// not compressed - just pass it on to file_io
// (avoid the Zip inflate start/finish stuff below)
if(!zfile_compressed(zf))
return file_io(&za->f, ofs, size, p);
// no need to set last_raw_ofs - only checked if compressed.
// compressed
// make sure we continue where we left off
// (compressed data must be read in one stream / sequence)
//
// problem: partial reads
if(raw_ofs != zf->last_raw_ofs)
{
debug_warn("zip_read: compressed read offset is non-continuous");
return -1;
}
void* buf;
bool free_buf = true;
// user-specified buf
if(*p)
{
buf = *p;
free_buf = false;
}
// we're going to allocate
else
{
buf = mem_alloc(size, 4096);
if(!buf)
return ERR_NO_MEM;
*p = buf;
}
err = (ssize_t)inf_start_read(zf->inf_ctx, buf, size);
if(err < 0)
{
fail:
// we allocated it, so free it now
if(free_buf)
{
mem_free(buf);
*p = 0;
}
return err;
}
// read blocks from the archive's file starting at ofs and pass them to
// zip_inflate, until all compressed data has been read, or it indicates
// the desired output amount has been reached.
const size_t raw_size = zf->csize;
raw_bytes_read = file_io(&za->f, ofs, raw_size, (void**)0, inf_inflate, zf->inf_ctx);
zf->last_raw_ofs = raw_ofs + (off_t)raw_bytes_read;
err = inf_finish_read(zf->inf_ctx);
if(err < 0)
goto fail;
err = raw_bytes_read;
// failed - make sure buffer is freed
if(err <= 0)
goto fail;
return err;
}
///////////////////////////////////////////////////////////////////////////////
// rationale for not supporting aio for compressed files:
// would complicate things considerably (could no longer just
// return the file I/O handle, since we have to decompress in wait_io),
// yet it isn't really useful - aio is used to stream music,
// which is already compressed.
// begin transferring <size> bytes, starting at <ofs>. get result
// with zip_wait_io; when no longer needed, free via zip_discard_io.
Handle zip_start_io(ZFile* const zf, off_t ofs, size_t size, void* buf)
{
CHECK_ZFILE(zf);
if(zfile_compressed(zf))
{
debug_warn("Zip aio doesn't currently support compressed files (see rationale above)");
return -1;
}
H_DEREF(zf->ha, ZArchive, za);
return file_start_io(&za->f, zf->ofs+ofs, size, buf);
}
// wait until the transfer <hio> completes, and return its buffer.
// output parameters are zeroed on error.
inline int zip_wait_io(Handle hio, void*& p, size_t& size)
{
return file_wait_io(hio, p, size);
}
// finished with transfer <hio> - free its buffer (returned by vfs_wait_io)
inline int zip_discard_io(Handle& hio)
{
return file_discard_io(hio);
}
///////////////////////////////////////////////////////////////////////////////
//
// file mapping
//
///////////////////////////////////////////////////////////////////////////////
// map the entire file <zf> into memory. mapping compressed files
// isn't allowed, since the compression algorithm is unspecified.
// output parameters are zeroed on failure.
//
// the mapping will be removed (if still open) when its file is closed.
// however, map/unmap calls should still be paired so that the mapping
// may be removed when no longer needed.
int zip_map(ZFile* const zf, void*& p, size_t& size)
{
p = 0;
size = 0;
CHECK_ZFILE(zf);
// mapping compressed files doesn't make sense because the
// compression algorithm is unspecified - disallow it.
if(zfile_compressed(zf))
{
debug_warn("zip_map: file is compressed");
return -1;
}
// note: we mapped the archive in zip_archive_open, but unmapped it
// in the meantime to save memory in case it wasn't going to be mapped.
// now we do so again; it's unmapped in zip_unmap (refcounted).
H_DEREF(zf->ha, ZArchive, za);
void* archive_p;
size_t archive_size;
CHECK_ERR(file_map(&za->f, archive_p, archive_size));
p = (char*)archive_p + zf->ofs;
size = zf->ucsize;
zf->flags |= ZF_HAS_MAPPING;
return 0;
}
// remove the mapping of file <zf>; fail if not mapped.
//
// the mapping will be removed (if still open) when its archive is closed.
// however, map/unmap calls should be paired so that the archive mapping
// may be removed when no longer needed.
int zip_unmap(ZFile* const zf)
{
CHECK_ZFILE(zf);
// make sure archive mapping refcount remains balanced:
// don't allow multiple unmaps.
if(!(zf->flags & ZF_HAS_MAPPING))
return -1;
zf->flags &= ~ZF_HAS_MAPPING;
H_DEREF(zf->ha, ZArchive, za);
return file_unmap(&za->f);
}