1
0
forked from 0ad/0ad
0ad/source/graphics/ModelDef.cpp
janwas c0ed950657 had to remove uint and ulong from lib/types.h due to conflict with other library.
this snowballed into a massive search+destroy of the hodgepodge of
mostly equivalent types we had in use (int, uint, unsigned, unsigned
int, i32, u32, ulong, uintN).

it is more efficient to use 64-bit types in 64-bit mode, so the
preferred default is size_t (for anything remotely resembling a size or
index). tile coordinates are ssize_t to allow more efficient conversion
to/from floating point. flags are int because we almost never need more
than 15 distinct bits, bit test/set is not slower and int is fastest to
type. finally, some data that is pretty much directly passed to OpenGL
is now typed accordingly.

after several hours, the code now requires fewer casts and less
guesswork.

other changes:
- unit and player IDs now have an "invalid id" constant in the
respective class to avoid casting and -1
- fix some endian/64-bit bugs in the map (un)packing. added a
convenience function to write/read a size_t.
- ia32: change CPUID interface to allow passing in ecx (required for
cache topology detection, which I need at work). remove some unneeded
functions from asm, replace with intrinsics where possible.

This was SVN commit r5942.
2008-05-11 18:48:32 +00:00

244 lines
8.1 KiB
C++

/**
* =========================================================================
* File : ModelDef.cpp
* Project : 0 A.D.
* Description : Defines a raw 3d model.
* =========================================================================
*/
#include "precompiled.h"
#include "ModelDef.h"
#include "graphics/SkeletonAnimDef.h"
#include "ps/FileIo.h"
#include "maths/Vector4D.h"
CVector3D CModelDef::SkinPoint(const SModelVertex& vtx,
const CMatrix3D newPoseMatrices[],
const CMatrix3D inverseBindMatrices[])
{
CVector3D result (0, 0, 0);
for (int i = 0; i < SVertexBlend::SIZE && vtx.m_Blend.m_Bone[i] != 0xff; ++i)
{
CVector3D bindSpace = inverseBindMatrices[vtx.m_Blend.m_Bone[i]].Transform(vtx.m_Coords);
CVector3D worldSpace = newPoseMatrices[vtx.m_Blend.m_Bone[i]].Transform(bindSpace);
result += worldSpace * vtx.m_Blend.m_Weight[i];
}
return result;
}
CVector3D CModelDef::SkinNormal(const SModelVertex& vtx,
const CMatrix3D newPoseMatrices[],
const CMatrix3D inverseBindMatrices[])
{
// To be correct, the normal vectors apparently need to be multiplied by the
// inverse of the transpose. Unfortunately inverses are slow.
// If a matrix is orthogonal, M * M^T = I and so the inverse of the transpose
// is the original matrix. But that's not entirely relevant here, because
// the bone matrices include translation components and so they're not
// orthogonal.
// But that's okay because we have
// M = T * R
// and want to find
// n' = (M^T^-1) * n
// = (T * R)^T^-1 * n
// = (R^T * T^T)^-1 * n
// = (T^T^-1 * R^T^-1) * n
// R is indeed orthogonal so R^T^-1 = R. T isn't orthogonal at all.
// But n is only a 3-vector, and from the forms of T and R (which have
// lots of zeroes) I can convince myself that replacing T with T^T^-1 has no
// effect on anything but the fourth component of M^T^-1 - and the fourth
// component is discarded since it has no effect on n', and so we can happily
// use n' = M*n.
//
// (This isn't very good as a proof, but it's better than assuming M is
// orthogonal when it's clearly not.)
CVector3D result (0, 0, 0);
for (int i = 0; i < SVertexBlend::SIZE && vtx.m_Blend.m_Bone[i] != 0xff; ++i)
{
CVector3D bindSpace = inverseBindMatrices[vtx.m_Blend.m_Bone[i]].Rotate(vtx.m_Norm);
CVector3D worldSpace = newPoseMatrices[vtx.m_Blend.m_Bone[i]].Rotate(bindSpace);
result += worldSpace * vtx.m_Blend.m_Weight[i];
}
// If there was more than one influence, the result is probably not going
// to be of unit length (since it's a weighted sum of several independent
// unit vectors), so we need to normalise it.
// (It's fairly common to only have one influence, so it seems sensible to
// optimise that case a bit.)
if (vtx.m_Blend.m_Bone[1] != 0xff) // if more than one influence
result.Normalize();
return result;
}
// CModelDef Constructor
CModelDef::CModelDef()
: m_NumVertices(0), m_pVertices(0), m_NumFaces(0), m_pFaces(0), m_NumBones(0), m_Bones(0),
m_NumPropPoints(0), m_PropPoints(0), m_Name("[not loaded]")
{
}
// CModelDef Destructor
CModelDef::~CModelDef()
{
for(RenderDataMap::iterator it = m_RenderData.begin(); it != m_RenderData.end(); ++it)
delete it->second;
delete[] m_pVertices;
delete[] m_pFaces;
delete[] m_Bones;
delete[] m_PropPoints;
}
// FindPropPoint: find and return pointer to prop point matching given name;
// return null if no match (case insensitive search)
SPropPoint* CModelDef::FindPropPoint(const char* name) const
{
for (size_t i = 0; i < m_NumPropPoints; ++i)
if (m_PropPoints[i].m_Name == name)
return &m_PropPoints[i];
return 0;
}
// Load: read and return a new CModelDef initialised with data from given file
CModelDef* CModelDef::Load(const VfsPath& filename, const char* name)
{
CFileUnpacker unpacker;
// read everything in from file
unpacker.Read(filename,"PSMD");
// check version
if (unpacker.GetVersion()<FILE_READ_VERSION) {
throw PSERROR_File_InvalidVersion();
}
std::auto_ptr<CModelDef> mdef (new CModelDef());
mdef->m_Name = name;
// now unpack everything
mdef->m_NumVertices = unpacker.UnpackSize();
mdef->m_pVertices=new SModelVertex[mdef->m_NumVertices];
unpacker.UnpackRaw(mdef->m_pVertices,sizeof(SModelVertex)*mdef->m_NumVertices);
mdef->m_NumFaces = unpacker.UnpackSize();
mdef->m_pFaces=new SModelFace[mdef->m_NumFaces];
unpacker.UnpackRaw(mdef->m_pFaces,sizeof(SModelFace)*mdef->m_NumFaces);
mdef->m_NumBones = unpacker.UnpackSize();
if (mdef->m_NumBones)
{
mdef->m_Bones=new CBoneState[mdef->m_NumBones];
unpacker.UnpackRaw(mdef->m_Bones,mdef->m_NumBones*sizeof(CBoneState));
}
if (unpacker.GetVersion() >= 2)
{
// versions >=2 also have prop point data
mdef->m_NumPropPoints = unpacker.UnpackSize();
if (mdef->m_NumPropPoints) {
mdef->m_PropPoints=new SPropPoint[mdef->m_NumPropPoints];
for (size_t i=0;i<mdef->m_NumPropPoints;i++) {
unpacker.UnpackString(mdef->m_PropPoints[i].m_Name);
unpacker.UnpackRaw(&mdef->m_PropPoints[i].m_Position.X,sizeof(mdef->m_PropPoints[i].m_Position));
unpacker.UnpackRaw(&mdef->m_PropPoints[i].m_Rotation.m_V.X,sizeof(mdef->m_PropPoints[i].m_Rotation));
unpacker.UnpackRaw(&mdef->m_PropPoints[i].m_BoneIndex,sizeof(mdef->m_PropPoints[i].m_BoneIndex));
// build prop point transform
mdef->m_PropPoints[i].m_Transform.SetIdentity();
mdef->m_PropPoints[i].m_Transform.Rotate(mdef->m_PropPoints[i].m_Rotation);
mdef->m_PropPoints[i].m_Transform.Translate(mdef->m_PropPoints[i].m_Position);
}
}
}
if (unpacker.GetVersion() <= 2)
{
// Versions <=2 store the vertexes relative to the bind pose. That
// isn't useful when you want to do correct skinning, so later versions
// store them in world space. So, fix the old models by skinning each
// vertex:
if (mdef->m_NumBones) // only do skinned models
{
CMatrix3D identity;
identity.SetIdentity();
std::vector<CMatrix3D> identityBones (mdef->m_NumBones, identity);
std::vector<CMatrix3D> bindPose (mdef->m_NumBones);
for (size_t i = 0; i < mdef->m_NumBones; ++i)
{
bindPose[i].SetIdentity();
bindPose[i].Rotate(mdef->m_Bones[i].m_Rotation);
bindPose[i].Translate(mdef->m_Bones[i].m_Translation);
}
for (size_t i = 0; i < mdef->m_NumVertices; ++i)
{
mdef->m_pVertices[i].m_Coords = SkinPoint(mdef->m_pVertices[i], &bindPose[0], &identityBones[0]);
mdef->m_pVertices[i].m_Norm = SkinNormal(mdef->m_pVertices[i], &bindPose[0], &identityBones[0]);
}
}
}
return mdef.release();
}
// Save: write the given CModelDef to the given file
void CModelDef::Save(const VfsPath& filename,const CModelDef* mdef)
{
CFilePacker packer(FILE_VERSION, "PSMD");
// pack everything up
const size_t numVertices = mdef->GetNumVertices();
packer.PackSize(numVertices);
packer.PackRaw(mdef->GetVertices(),sizeof(SModelVertex)*numVertices);
const size_t numFaces = mdef->GetNumFaces();
packer.PackSize(numFaces);
packer.PackRaw(mdef->GetFaces(),sizeof(SModelFace)*numFaces);
const size_t numBones = mdef->m_NumBones;
packer.PackSize(numBones);
if (numBones)
packer.PackRaw(mdef->m_Bones,sizeof(CBoneState)*numBones);
const size_t numPropPoints = mdef->m_NumPropPoints;
packer.PackSize(numPropPoints);
for (size_t i=0;i<mdef->m_NumPropPoints;i++) {
packer.PackString(mdef->m_PropPoints[i].m_Name);
packer.PackRaw(&mdef->m_PropPoints[i].m_Position.X,sizeof(mdef->m_PropPoints[i].m_Position));
packer.PackRaw(&mdef->m_PropPoints[i].m_Rotation.m_V.X,sizeof(mdef->m_PropPoints[i].m_Rotation));
packer.PackRaw(&mdef->m_PropPoints[i].m_BoneIndex,sizeof(mdef->m_PropPoints[i].m_BoneIndex));
}
// flush everything out to file
packer.Write(filename);
}
// SetRenderData: Set the render data object for the given key,
void CModelDef::SetRenderData(const void* key, CModelDefRPrivate* data)
{
delete m_RenderData[key];
m_RenderData[key] = data;
}
// GetRenderData: Get the render data object for the given key,
// or 0 if no such object exists.
// Reference count of the render data object is automatically increased.
CModelDefRPrivate* CModelDef::GetRenderData(const void* key) const
{
RenderDataMap::const_iterator it = m_RenderData.find(key);
if (it != m_RenderData.end())
return it->second;
return 0;
}