1
0
forked from 0ad/0ad
0ad/source/simulation2/components/CCmpObstructionManager.cpp

533 lines
17 KiB
C++

/* Copyright (C) 2010 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "simulation2/system/Component.h"
#include "ICmpObstructionManager.h"
#include "simulation2/MessageTypes.h"
#include "simulation2/helpers/Geometry.h"
#include "simulation2/helpers/Render.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "maths/MathUtil.h"
#include "ps/Overlay.h"
#include "ps/Profile.h"
#include "renderer/Scene.h"
// Externally, tags are opaque non-zero positive integers.
// Internally, they are tagged (by shape) indexes into shape lists.
// idx must be non-zero.
#define TAG_IS_UNIT(tag) (((tag) & 1) == 0)
#define TAG_IS_STATIC(tag) (((tag) & 1) == 1)
#define UNIT_INDEX_TO_TAG(idx) (((idx) << 1) | 0)
#define STATIC_INDEX_TO_TAG(idx) (((idx) << 1) | 1)
#define TAG_TO_INDEX(tag) ((tag) >> 1)
/**
* Internal representation of axis-aligned sometimes-square sometimes-circle shapes for moving units
*/
struct UnitShape
{
entity_pos_t x, z;
entity_pos_t r; // radius of circle, or half width of square
bool moving; // whether it's currently mobile (and should be generally ignored when pathing)
};
/**
* Internal representation of arbitrary-rotation static square shapes for buildings
*/
struct StaticShape
{
entity_pos_t x, z; // world-space coordinates
CFixedVector2D u, v; // orthogonal unit vectors - axes of local coordinate space
entity_pos_t hw, hh; // half width/height in local coordinate space
};
class CCmpObstructionManager : public ICmpObstructionManager
{
public:
static void ClassInit(CComponentManager& componentManager)
{
componentManager.SubscribeToMessageType(MT_RenderSubmit); // for debug overlays
}
DEFAULT_COMPONENT_ALLOCATOR(ObstructionManager)
bool m_DebugOverlayEnabled;
bool m_DebugOverlayDirty;
std::vector<SOverlayLine> m_DebugOverlayLines;
// TODO: using std::map is a bit inefficient; is there a better way to store these?
std::map<u32, UnitShape> m_UnitShapes;
std::map<u32, StaticShape> m_StaticShapes;
u32 m_UnitShapeNext; // next allocated id
u32 m_StaticShapeNext;
static std::string GetSchema()
{
return "<a:component type='system'/><empty/>";
}
virtual void Init(const CSimContext& context, const CParamNode& UNUSED(paramNode))
{
m_DebugOverlayEnabled = false;
m_DebugOverlayDirty = true;
m_UnitShapeNext = 1;
m_StaticShapeNext = 1;
m_DirtyID = 1; // init to 1 so default-initialised grids are considered dirty
}
virtual void Deinit(const CSimContext& UNUSED(context))
{
}
virtual void Serialize(ISerializer& serialize)
{
// TODO: do something here
// (Do we need to serialise the obstruction state, or is it fine to regenerate it from
// the original entities after deserialisation?)
}
virtual void Deserialize(const CSimContext& context, const CParamNode& paramNode, IDeserializer& deserialize)
{
Init(context, paramNode);
// TODO
}
virtual void HandleMessage(const CSimContext& context, const CMessage& msg, bool UNUSED(global))
{
switch (msg.GetType())
{
case MT_RenderSubmit:
{
const CMessageRenderSubmit& msgData = static_cast<const CMessageRenderSubmit&> (msg);
RenderSubmit(context, msgData.collector);
break;
}
}
}
virtual tag_t AddUnitShape(entity_pos_t x, entity_pos_t z, entity_pos_t r, bool moving)
{
UnitShape shape = { x, z, r, moving };
size_t id = m_UnitShapeNext++;
m_UnitShapes[id] = shape;
MakeDirty();
return UNIT_INDEX_TO_TAG(id);
}
virtual tag_t AddStaticShape(entity_pos_t x, entity_pos_t z, entity_angle_t a, entity_pos_t w, entity_pos_t h)
{
fixed s, c;
sincos_approx(a, s, c);
CFixedVector2D u(c, -s);
CFixedVector2D v(s, c);
StaticShape shape = { x, z, u, v, w/2, h/2 };
size_t id = m_StaticShapeNext++;
m_StaticShapes[id] = shape;
MakeDirty();
return STATIC_INDEX_TO_TAG(id);
}
virtual void MoveShape(tag_t tag, entity_pos_t x, entity_pos_t z, entity_angle_t a)
{
debug_assert(tag);
if (TAG_IS_UNIT(tag))
{
UnitShape& shape = m_UnitShapes[TAG_TO_INDEX(tag)];
shape.x = x;
shape.z = z;
}
else
{
fixed s, c;
sincos_approx(a, s, c);
CFixedVector2D u(c, -s);
CFixedVector2D v(s, c);
StaticShape& shape = m_StaticShapes[TAG_TO_INDEX(tag)];
shape.x = x;
shape.z = z;
shape.u = u;
shape.v = v;
}
MakeDirty();
}
virtual void SetUnitMovingFlag(tag_t tag, bool moving)
{
debug_assert(tag && TAG_IS_UNIT(tag));
if (TAG_IS_UNIT(tag))
{
UnitShape& shape = m_UnitShapes[TAG_TO_INDEX(tag)];
shape.moving = moving;
}
}
virtual void RemoveShape(tag_t tag)
{
debug_assert(tag);
if (TAG_IS_UNIT(tag))
m_UnitShapes.erase(TAG_TO_INDEX(tag));
else
m_StaticShapes.erase(TAG_TO_INDEX(tag));
MakeDirty();
}
virtual ObstructionSquare GetObstruction(tag_t tag)
{
debug_assert(tag);
if (TAG_IS_UNIT(tag))
{
UnitShape& shape = m_UnitShapes[TAG_TO_INDEX(tag)];
CFixedVector2D u(entity_pos_t::FromInt(1), entity_pos_t::Zero());
CFixedVector2D v(entity_pos_t::Zero(), entity_pos_t::FromInt(1));
ObstructionSquare o = { shape.x, shape.z, u, v, shape.r, shape.r };
return o;
}
else
{
StaticShape& shape = m_StaticShapes[TAG_TO_INDEX(tag)];
ObstructionSquare o = { shape.x, shape.z, shape.u, shape.v, shape.hw, shape.hh };
return o;
}
}
virtual bool TestLine(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, entity_pos_t r);
virtual bool TestStaticShape(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h);
virtual bool TestUnitShape(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r);
virtual bool Rasterise(Grid<u8>& grid);
virtual void GetObstructionsInRange(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, std::vector<ObstructionSquare>& squares);
virtual bool FindMostImportantObstruction(entity_pos_t x, entity_pos_t z, entity_pos_t r, ObstructionSquare& square);
virtual void SetDebugOverlay(bool enabled)
{
m_DebugOverlayEnabled = enabled;
m_DebugOverlayDirty = true;
if (!enabled)
m_DebugOverlayLines.clear();
}
void RenderSubmit(const CSimContext& context, SceneCollector& collector);
private:
// To support lazy updates of grid rasterisations of obstruction data,
// we maintain a DirtyID here and increment it whenever obstructions change;
// if a grid has a lower DirtyID then it needs to be updated.
size_t m_DirtyID;
/**
* Mark all previous Rasterise()d grids as dirty
*/
void MakeDirty()
{
++m_DirtyID;
m_DebugOverlayDirty = true;
}
/**
* Test whether a Rasterise()d grid is dirty and needs updating
*/
template<typename T>
bool IsDirty(const Grid<T>& grid)
{
return grid.m_DirtyID < m_DirtyID;
}
};
REGISTER_COMPONENT_TYPE(ObstructionManager)
bool CCmpObstructionManager::TestLine(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, entity_pos_t r)
{
PROFILE("TestLine");
// TODO: this is all very inefficient, it should use some kind of spatial data structures
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
if (!filter.Allowed(UNIT_INDEX_TO_TAG(it->first), it->second.moving))
continue;
CFixedVector2D center(it->second.x, it->second.z);
CFixedVector2D halfSize(it->second.r + r, it->second.r + r);
CFixedVector2D u(entity_pos_t::FromInt(1), entity_pos_t::Zero());
CFixedVector2D v(entity_pos_t::Zero(), entity_pos_t::FromInt(1));
if (Geometry::TestRaySquare(CFixedVector2D(x0, z0) - center, CFixedVector2D(x1, z1) - center, u, v, halfSize))
return true;
// If this is slow we could use a specialised TestRayAlignedSquare for axis-aligned squares
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
if (!filter.Allowed(STATIC_INDEX_TO_TAG(it->first), false))
continue;
CFixedVector2D center(it->second.x, it->second.z);
CFixedVector2D halfSize(it->second.hw + r, it->second.hh + r);
if (Geometry::TestRaySquare(CFixedVector2D(x0, z0) - center, CFixedVector2D(x1, z1) - center, it->second.u, it->second.v, halfSize))
return true;
}
return false;
}
bool CCmpObstructionManager::TestStaticShape(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h)
{
PROFILE("TestStaticShape");
fixed s, c;
sincos_approx(a, s, c);
CFixedVector2D u(c, -s);
CFixedVector2D v(s, c);
CFixedVector2D center(x, z);
CFixedVector2D halfSize(w/2, h/2);
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
if (!filter.Allowed(UNIT_INDEX_TO_TAG(it->first), it->second.moving))
continue;
CFixedVector2D center1(it->second.x, it->second.z);
if (Geometry::PointIsInSquare(center1 - center, u, v, CFixedVector2D(halfSize.X + it->second.r, halfSize.Y + it->second.r)))
return true;
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
if (!filter.Allowed(STATIC_INDEX_TO_TAG(it->first), false))
continue;
CFixedVector2D center1(it->second.x, it->second.z);
CFixedVector2D halfSize1(it->second.hw, it->second.hh);
if (Geometry::TestSquareSquare(center, u, v, halfSize, center1, it->second.u, it->second.v, halfSize1))
return true;
}
return false;
}
bool CCmpObstructionManager::TestUnitShape(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r)
{
PROFILE("TestUnitShape");
CFixedVector2D center(x, z);
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
if (!filter.Allowed(UNIT_INDEX_TO_TAG(it->first), it->second.moving))
continue;
entity_pos_t r1 = it->second.r;
if (!(it->second.x + r1 < x - r || it->second.x - r1 > x + r || it->second.z + r1 < z - r || it->second.z - r1 > z + r))
return true;
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
if (!filter.Allowed(STATIC_INDEX_TO_TAG(it->first), false))
continue;
CFixedVector2D center1(it->second.x, it->second.z);
if (Geometry::PointIsInSquare(center1 - center, it->second.u, it->second.v, CFixedVector2D(it->second.hw + r, it->second.hh + r)))
return true;
}
return false;
}
/**
* Compute the tile indexes on the grid nearest to a given point
*/
static void NearestTile(entity_pos_t x, entity_pos_t z, u16& i, u16& j, u16 w, u16 h)
{
i = clamp((x / (int)CELL_SIZE).ToInt_RoundToZero(), 0, w-1);
j = clamp((z / (int)CELL_SIZE).ToInt_RoundToZero(), 0, h-1);
}
/**
* Returns the position of the center of the given tile
*/
static void TileCenter(u16 i, u16 j, entity_pos_t& x, entity_pos_t& z)
{
x = entity_pos_t::FromInt(i*(int)CELL_SIZE + CELL_SIZE/2);
z = entity_pos_t::FromInt(j*(int)CELL_SIZE + CELL_SIZE/2);
}
bool CCmpObstructionManager::Rasterise(Grid<u8>& grid)
{
if (!IsDirty(grid))
return false;
grid.m_DirtyID = m_DirtyID;
// TODO: this is all hopelessly inefficient
// What we should perhaps do is have some kind of quadtree storing Shapes so it's
// quick to invalidate and update small numbers of tiles
grid.reset();
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
CFixedVector2D center(it->second.x, it->second.z);
// Since we only count tiles whose centers are inside the square,
// we maybe want to expand the square a bit so we're less likely to think there's
// free space between buildings when there isn't. But this is just a random guess
// and needs to be tweaked until everything works nicely.
entity_pos_t expand = entity_pos_t::FromInt(CELL_SIZE / 2);
CFixedVector2D halfSize(it->second.hw + expand, it->second.hh + expand);
CFixedVector2D halfBound = Geometry::GetHalfBoundingBox(it->second.u, it->second.v, halfSize);
u16 i0, j0, i1, j1;
NearestTile(center.X - halfBound.X, center.Y - halfBound.Y, i0, j0, grid.m_W, grid.m_H);
NearestTile(center.X + halfBound.X, center.Y + halfBound.Y, i1, j1, grid.m_W, grid.m_H);
for (u16 j = j0; j <= j1; ++j)
{
for (u16 i = i0; i <= i1; ++i)
{
entity_pos_t x, z;
TileCenter(i, j, x, z);
if (Geometry::PointIsInSquare(CFixedVector2D(x, z) - center, it->second.u, it->second.v, halfSize))
grid.set(i, j, 1);
}
}
}
return true;
}
void CCmpObstructionManager::GetObstructionsInRange(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, std::vector<ObstructionSquare>& squares)
{
// TODO: this should be made faster with quadtrees or whatever
PROFILE("GetObstructionsInRange");
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
if (!filter.Allowed(UNIT_INDEX_TO_TAG(it->first), it->second.moving))
continue;
entity_pos_t r = it->second.r;
// Skip this object if it's completely outside the requested range
if (it->second.x + r < x0 || it->second.x - r > x1 || it->second.z + r < z0 || it->second.z - r > z1)
continue;
CFixedVector2D u(entity_pos_t::FromInt(1), entity_pos_t::Zero());
CFixedVector2D v(entity_pos_t::Zero(), entity_pos_t::FromInt(1));
ObstructionSquare s = { it->second.x, it->second.z, u, v, r, r };
squares.push_back(s);
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
if (!filter.Allowed(STATIC_INDEX_TO_TAG(it->first), false))
continue;
entity_pos_t r = it->second.hw + it->second.hh; // overestimate the max dist of an edge from the center
// Skip this object if its overestimated bounding box is completely outside the requested range
if (it->second.x + r < x0 || it->second.x - r > x1 || it->second.z + r < z0 || it->second.z - r > z1)
continue;
// TODO: maybe we should use Geometry::GetHalfBoundingBox to be more precise?
ObstructionSquare s = { it->second.x, it->second.z, it->second.u, it->second.v, it->second.hw, it->second.hh };
squares.push_back(s);
}
}
bool CCmpObstructionManager::FindMostImportantObstruction(entity_pos_t x, entity_pos_t z, entity_pos_t r, ObstructionSquare& square)
{
std::vector<ObstructionSquare> squares;
CFixedVector2D center(x, z);
// First look for obstructions that are covering the exact target point
NullObstructionFilter filter;
GetObstructionsInRange(filter, x, z, x, z, squares);
// Building squares are more important but returned last, so check backwards
for (std::vector<ObstructionSquare>::reverse_iterator it = squares.rbegin(); it != squares.rend(); ++it)
{
CFixedVector2D halfSize(it->hw, it->hh);
if (Geometry::PointIsInSquare(CFixedVector2D(it->x, it->z) - center, it->u, it->v, halfSize))
{
square = *it;
return true;
}
}
// Then look for obstructions that cover the target point when expanded by r
// (i.e. if the target is not inside an object but closer than we can get to it)
// TODO: actually do that
// (This might matter when you tell a unit to walk too close to the edge of a building)
return false;
}
void CCmpObstructionManager::RenderSubmit(const CSimContext& context, SceneCollector& collector)
{
if (!m_DebugOverlayEnabled)
return;
CColor defaultColour(0, 0, 1, 1);
CColor movingColour(1, 0, 1, 1);
// If the shapes have changed, then regenerate all the overlays
if (m_DebugOverlayDirty)
{
m_DebugOverlayLines.clear();
for (std::map<u32, UnitShape>::iterator it = m_UnitShapes.begin(); it != m_UnitShapes.end(); ++it)
{
m_DebugOverlayLines.push_back(SOverlayLine());
m_DebugOverlayLines.back().m_Color = (it->second.moving ? movingColour : defaultColour);
SimRender::ConstructSquareOnGround(context, it->second.x.ToFloat(), it->second.z.ToFloat(), it->second.r.ToFloat()*2, it->second.r.ToFloat()*2, 0, m_DebugOverlayLines.back());
}
for (std::map<u32, StaticShape>::iterator it = m_StaticShapes.begin(); it != m_StaticShapes.end(); ++it)
{
m_DebugOverlayLines.push_back(SOverlayLine());
m_DebugOverlayLines.back().m_Color = defaultColour;
float a = atan2(it->second.v.X.ToFloat(), it->second.v.Y.ToFloat());
SimRender::ConstructSquareOnGround(context, it->second.x.ToFloat(), it->second.z.ToFloat(), it->second.hw.ToFloat()*2, it->second.hh.ToFloat()*2, a, m_DebugOverlayLines.back());
}
m_DebugOverlayDirty = false;
}
for (size_t i = 0; i < m_DebugOverlayLines.size(); ++i)
collector.Submit(&m_DebugOverlayLines[i]);
}