// 2d texture format codecs // // Copyright (c) 2004 Jan Wassenberg // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // Contact info: // Jan.Wassenberg@stud.uni-karlsruhe.de // http://www.stud.uni-karlsruhe.de/~urkt/ #include "precompiled.h" #include #include #include #include "lib.h" #include "timer.h" #include "../res.h" #include "tex.h" #include "tex_codec.h" // be careful not to use other tex_* APIs here because they call us. int tex_validate(const Tex* t) { // pixel data size_t tex_file_size; void* tex_file = mem_get_ptr(t->hm, &tex_file_size); // .. only check validity if the image is still in memory. // (e.g. ogl_tex frees the data after uploading to GL) if(tex_file) { // file size smaller than header+pixels. // possible causes: texture file header is invalid, // or file wasn't loaded completely. if(tex_file_size < t->ofs + t->w*t->h*t->bpp/8) return -2; } // bits per pixel // (we don't bother checking all values; a sanity check is enough) if(t->bpp % 4 || t->bpp > 32) return -3; // flags // .. DXT value const uint dxt = t->flags & TEX_DXT; if(dxt != 0 && dxt != 1 && dxt != DXT1A && dxt != 3 && dxt != 5) return -4; // .. orientation const uint orientation = t->flags & TEX_ORIENTATION; if(orientation == (TEX_BOTTOM_UP|TEX_TOP_DOWN)) return -5; return 0; } // check if the given texture format is acceptable: 8bpp grey, // 24bpp color or 32bpp color+alpha (BGR / upside down are permitted). // basically, this is the "plain" format understood by all codecs and // tex_codec_plain_transform. // return 0 if ok or a negative error code. static int validate_format(uint bpp, uint flags) { const bool alpha = (flags & TEX_ALPHA ) != 0; const bool grey = (flags & TEX_GREY ) != 0; const bool dxt = (flags & TEX_DXT ) != 0; const bool mipmaps = (flags & TEX_MIPMAPS) != 0; if(dxt || mipmaps) return ERR_TEX_FMT_INVALID; // grey must be 8bpp without alpha, or it's invalid. if(grey) { if(bpp == 8 && !alpha) return 0; return ERR_TEX_FMT_INVALID; } if(bpp == 24 && !alpha) return 0; if(bpp == 32 && alpha) return 0; return ERR_TEX_FMT_INVALID; } struct CreateLevelData { uint num_components; uint prev_level_w; uint prev_level_h; const u8* prev_level_data; size_t prev_level_data_size; }; // uses 2x2 box filter static void create_level(uint level, uint level_w, uint level_h, const u8* restrict level_data, size_t level_data_size, void* restrict ctx) { CreateLevelData* cld = (CreateLevelData*)ctx; const u8* src = cld->prev_level_data; u8* dst = (u8*)level_data; // base level - must be copied over from source buffer if(level == 0) { debug_assert(level_data_size == cld->prev_level_data_size); memcpy(dst, src, level_data_size); } else { const uint num_components = cld->num_components; const size_t dx = num_components, dy = dx*level_w*2; // special case: image is too small for 2x2 filter if(cld->prev_level_w == 1 || cld->prev_level_h == 1) { for(uint y = 0; y < level_h; y++) { for(uint i = 0; i < num_components; i++) { *dst++ = (src[0]+src[dy]+1)/2; src += 1; } src += dy; } } // normal else { for(uint y = 0; y < level_h; y++) { for(uint x = 0; x < level_w; x++) { for(uint i = 0; i < num_components; i++) { *dst++ = (src[0]+src[dx]+src[dy]+src[dx+dy]+2)/4; src += 1; } src += dx; } src += dy; } } debug_assert(dst == level_data + level_data_size); debug_assert(src == cld->prev_level_data + cld->prev_level_data_size); } cld->prev_level_data = level_data; cld->prev_level_data_size = level_data_size; cld->prev_level_w = level_w; cld->prev_level_h = level_h; } // handles BGR and row flipping in "plain" format (see below). // // called by codecs after they get their format-specific transforms out of // the way. note that this approach requires several passes over the image, // but is much easier to maintain than providing all<->all conversion paths. // // somewhat optimized (loops are hoisted, cache associativity accounted for) static int plain_transform(Tex* t, uint transforms) { // (this is also called directly instead of through ogl_tex, so // we need to validate) CHECK_ERR(tex_validate(t)); // extract texture info const uint w = t->w, h = t->h, bpp = t->bpp, flags = t->flags; u8* const data = tex_get_data(t); const size_t data_size = tex_img_size(t); // sanity checks (not errors, we just can't handle these cases) // .. unknown transform if(transforms & ~(TEX_BGR|TEX_ORIENTATION|TEX_MIPMAPS)) return TEX_CODEC_CANNOT_HANDLE; // .. data is not in "plain" format if(validate_format(bpp, flags) != 0) return TEX_CODEC_CANNOT_HANDLE; // .. nothing to do if(!transforms) return 0; // setup row source/destination pointers (simplifies outer loop) u8* dst = data; const u8* src = data; const size_t pitch = w * bpp/8; ssize_t row_ofs = (ssize_t)pitch; // avoid y*pitch multiply in row loop; instead, add row_ofs. void* clone_data = 0; // flipping rows (0,1,2 -> 2,1,0) if(transforms & TEX_ORIENTATION) { // L1 cache is typically A2 => swapping in-place with a line buffer // leads to thrashing. we'll assume the whole texture*2 fits in cache, // allocate a copy, and transfer directly from there. // // note: we don't want to return a new buffer: the user assumes // buffer address will remain unchanged. clone_data = mem_alloc(data_size, 4*KiB); if(!clone_data) return ERR_NO_MEM; memcpy(clone_data, data, data_size); src = (const u8*)clone_data+data_size-pitch; // last row row_ofs = -(ssize_t)pitch; } // no BGR convert necessary if(!(transforms & TEX_BGR)) { for(uint y = 0; y < h; y++) { memcpy(dst, src, pitch); dst += pitch; src += row_ofs; } } // RGB <-> BGR else if(bpp == 24) { for(uint y = 0; y < h; y++) { for(uint x = 0; x < w; x++) { // need temporaries in case src == dst (i.e. not flipping) const u8 b = src[0], g = src[1], r = src[2]; dst[0] = r; dst[1] = g; dst[2] = b; dst += 3; src += 3; } src += row_ofs - pitch; // flip? previous row : stay } } // RGBA <-> BGRA else if(bpp == 32) { for(uint y = 0; y < h; y++) { for(uint x = 0; x < w; x++) { // need temporaries in case src == dst (i.e. not flipping) const u8 b = src[0], g = src[1], r = src[2], a = src[3]; dst[0] = r; dst[1] = g; dst[2] = b; dst[3] = a; dst += 4; src += 4; } src += row_ofs - pitch; // flip? previous row : stay } } if(clone_data) (void)mem_free(clone_data); if(!(t->flags & TEX_MIPMAPS) && transforms & TEX_MIPMAPS) { // this code assumes the image is of POT dimension; we don't // go to the trouble of implememting image scaling because // the only place this is used (ogl_tex_upload) requires POT anyway. if(!is_pow2(w) || !is_pow2(h)) return ERR_TEX_INVALID_SIZE; t->flags |= TEX_MIPMAPS; // must come before tex_img_size! const size_t mipmap_size = tex_img_size(t); Handle hm; const u8* mipmap_data = (const u8*)mem_alloc(mipmap_size, 4*KiB, 0, &hm); if(!mipmap_data) return ERR_NO_MEM; CreateLevelData cld = { bpp/8, w, h, data, data_size }; tex_util_foreach_mipmap(w, h, bpp, mipmap_data, 0, 1, create_level, &cld); mem_free_h(t->hm); t->hm = hm; } return 0; } //----------------------------------------------------------------------------- // image orientation //----------------------------------------------------------------------------- // see "Default Orientation" in docs. static int global_orientation = TEX_TOP_DOWN; // set the orientation (either TEX_BOTTOM_UP or TEX_TOP_DOWN) to which // all loaded images will automatically be converted // (excepting file formats that don't specify their orientation, i.e. DDS). void tex_set_global_orientation(int o) { debug_assert(o == TEX_TOP_DOWN || o == TEX_BOTTOM_UP); global_orientation = o; } static void flip_to_global_orientation(Tex* t) { uint orientation = t->flags & TEX_ORIENTATION; // if codec knows which way around the image is (i.e. not DDS): if(orientation) { // flip image if necessary uint transforms = orientation ^ global_orientation; WARN_ERR(plain_transform(t, transforms)); } // indicate image is at global orientation. this is still done even // if the codec doesn't know: the default orientation should be chosen // to make that work correctly (see "Default Orientation" in docs). t->flags = (t->flags & ~TEX_ORIENTATION) | global_orientation; } // indicate if the orientation specified by matches // dst_orientation (if the latter is 0, then the global_orientation). // (we ask for src_flags instead of src_orientation so callers don't // have to mask off TEX_ORIENTATION) static bool orientations_match(uint src_flags, uint dst_orientation) { const uint src_orientation = src_flags & TEX_ORIENTATION; if(dst_orientation == 0) dst_orientation = global_orientation; return (src_orientation == dst_orientation); } //----------------------------------------------------------------------------- // util //----------------------------------------------------------------------------- // allocate an array of row pointers that point into the given texture data. // indicates whether the file format is top-down or // bottom-up; the row array is inverted if necessary to match global // orienatation. (this is more efficient than "transforming" later) // // used by PNG and JPG codecs; caller must free() rows when done. // // note: we don't allocate the data param ourselves because this function is // needed for encoding, too (where data is already present). int tex_util_alloc_rows(const u8* data, size_t h, size_t pitch, uint src_flags, uint dst_orientation, RowArray& rows) { const bool flip = !orientations_match(src_flags, dst_orientation); rows = (RowArray)malloc(h * sizeof(RowPtr)); if(!rows) return ERR_NO_MEM; // determine start position and direction RowPtr pos = flip? data+pitch*(h-1) : data; const ssize_t add = flip? -(ssize_t)pitch : (ssize_t)pitch; const RowPtr end = flip? data-pitch : data+pitch*h; for(size_t i = 0; i < h; i++) { rows[i] = pos; pos += add; } debug_assert(pos == end); return 0; } int tex_util_write(Tex* t, uint transforms, const void* hdr, size_t hdr_size, DynArray* da) { RETURN_ERR(tex_transform(t, transforms)); void* img_data = tex_get_data(t); const size_t img_size = tex_img_size(t); RETURN_ERR(da_append(da, hdr, hdr_size)); RETURN_ERR(da_append(da, img_data, img_size)); return 0; } void tex_util_foreach_mipmap(uint w, uint h, uint bpp, const u8* restrict data, int levels_to_skip, uint data_padding, MipmapCB cb, void* restrict ctx) { uint level_w = w, level_h = h; const u8* level_data = data; // we iterate through the loop (necessary to skip over image data), // but do not actually call back until the requisite number of // levels have been skipped (i.e. level == 0). int level = -(int)levels_to_skip; if(levels_to_skip == -1) level = 0; // until at level 1x1: for(;;) { // used to skip past this mip level in const size_t level_data_size = (size_t)(round_up(level_w, data_padding) * round_up(level_h, data_padding) * bpp/8); if(level >= 0) cb((uint)level, level_w, level_h, level_data, level_data_size, ctx); level_data += level_data_size; // 1x1 reached - done if(level_w == 1 && level_h == 1) break; level_w /= 2; level_h /= 2; // if the texture is non-square, one of the dimensions will become // 0 before the other. to satisfy OpenGL's expectations, change it // back to 1. if(level_w == 0) level_w = 1; if(level_h == 0) level_h = 1; level++; // special case: no mipmaps, we were only supposed to call for // the base level if(levels_to_skip == -1) break; } } //----------------------------------------------------------------------------- // support routines for codecs //----------------------------------------------------------------------------- // should be a tight bound because we iterate this many times (for convenience) static const uint MAX_CODECS = 8; static const TexCodecVTbl* codecs[MAX_CODECS]; // add this vtbl to the codec list. called at NLSO init time by the // TEX_CODEC_REGISTER in each codec file. note that call order and therefore // order in the list is undefined, but since each codec only steps up if it // can handle the given format, this is not a problem. int tex_codec_register(const TexCodecVTbl* c) { debug_assert(c != 0 && "tex_codec_register(0) - why?"); for(uint i = 0; i < MAX_CODECS; i++) { // slot available if(codecs[i] == 0) { codecs[i] = c; return 0; // success } } // didn't find a free slot. debug_warn("tex_codec_register: increase MAX_CODECS"); return 0; // failure, but caller ignores return value } // find codec that recognizes the desired output file extension int tex_codec_for_filename(const char* fn, const TexCodecVTbl** c) { const char* ext = strrchr(fn, '.'); if(!ext) return ERR_UNKNOWN_FORMAT; ext++; // skip '.' for(uint i = 0; i < MAX_CODECS; i++) { *c = codecs[i]; // skip if 0 (e.g. if MAX_CODECS != num codecs) if(!*c) continue; // we found it if((*c)->is_ext(ext)) return 0; } return ERR_UNKNOWN_FORMAT; } // find codec that recognizes the header's magic field int tex_codec_for_header(const u8* file, size_t file_size, const TexCodecVTbl** c) { // we guarantee at least 4 bytes for is_hdr to look at if(file_size < 4) return ERR_TEX_HEADER_NOT_COMPLETE; for(uint i = 0; i < MAX_CODECS; i++) { *c = codecs[i]; // skip if 0 (e.g. if MAX_CODECS != num codecs) if(!*c) continue; // we found it if((*c)->is_hdr(file)) return 0; } return ERR_UNKNOWN_FORMAT; } static int tex_codec_transform(Tex* t, uint transforms) { int ret = TEX_CODEC_CANNOT_HANDLE; // find codec that understands the data, and transform for(int i = 0; i < MAX_CODECS; i++) { // MAX_CODECS isn't a tight bound and we have hit a 0 entry if(!codecs[i]) continue; int err = codecs[i]->transform(t, transforms); if(err == 0) return 0; else if(err == TEX_CODEC_CANNOT_HANDLE) continue; else { ret = err; debug_warn("tex_codec_transform: codec indicates error"); } } return ret; } //----------------------------------------------------------------------------- // API //----------------------------------------------------------------------------- // split out of tex_load to ease resource cleanup static int tex_load_impl(void* file_, size_t file_size, Tex* t) { u8* file = (u8*)file_; const TexCodecVTbl* c; RETURN_ERR(tex_codec_for_header(file, file_size, &c)); // make sure the entire header has been read const size_t min_hdr_size = c->hdr_size(0); if(file_size < min_hdr_size) return ERR_TEX_HEADER_NOT_COMPLETE; const size_t hdr_size = c->hdr_size(file); if(file_size < hdr_size) return ERR_TEX_HEADER_NOT_COMPLETE; t->ofs = hdr_size; DynArray da; RETURN_ERR(da_wrap_fixed(&da, file, file_size)); RETURN_ERR(c->decode(&da, t)); // sanity checks if(!t->w || !t->h || t->bpp > 32) return ERR_TEX_FMT_INVALID; // TODO: need to compare against the new t->hm (file may be compressed, cannot use file_size) //if(mem_size < t->ofs + tex_img_size(t)) // return ERR_TEX_INVALID_SIZE; flip_to_global_orientation(t); return 0; } // load the specified image from file into the given Tex object. // currently supports BMP, TGA, JPG, JP2, PNG, DDS. int tex_load(const char* fn, Tex* t) { // load file void* file; size_t file_size; Handle hm = vfs_load(fn, file, file_size); RETURN_ERR(hm); // (need handle below; can't test return value directly) t->hm = hm; int ret = tex_load_impl(file, file_size, t); if(ret < 0) { (void)tex_free(t); debug_warn("tex_load failed"); } // do not free hm! it either still holds the image data (i.e. texture // wasn't compressed) or was replaced by a new buffer for the image data. return ret; } // store the given image data into a Tex object; this will be as if // it had been loaded via tex_load. // // rationale: support for in-memory images is necessary for // emulation of glCompressedTexImage2D and useful overall. // however, we don't want to provide an alternate interface for each API; // these would have to be changed whenever fields are added to Tex. // instead, provide one entry point for specifying images. // note: since we do not know how was allocated, the caller must do // so (after calling tex_free, which is required regardless of alloc type). // // we need only add bookkeeping information and "wrap" it in // our Tex struct, hence the name. int tex_wrap(uint w, uint h, uint bpp, uint flags, void* img, Tex* t) { t->w = w; t->h = h; t->bpp = bpp; t->flags = flags; // note: we can't use tex_img_size because that requires all // Tex fields to be valid, but this calculation must be done first. const size_t img_size = w*h*bpp/8; t->hm = mem_wrap(img, img_size, 0, 0, 0, 0, 0); RETURN_ERR(t->hm); // the exact value of img is lost, since the handle references the // allocation and disregards the offset within it given by . // fix that up by setting t->ofs. void* reported_ptr = mem_get_ptr(t->hm); t->ofs = (u8*)img - (u8*)reported_ptr; // TODO: remove when mem_wrap / mem_get_ptr add a reference correctly h_add_ref(t->hm); return 0; } // free all resources associated with the image and make further // use of it impossible. int tex_free(Tex* t) { // do not validate - this is called from tex_load if loading // failed, so not all fields may be valid. int ret = mem_free_h(t->hm); // do not zero out the fields! that could lead to trouble since // ogl_tex_upload followed by ogl_tex_free is legit, but would // cause OglTex_validate to fail (since its Tex.w is == 0). return ret; } //----------------------------------------------------------------------------- TIMER_ADD_CLIENT(tc_transform); // change 's pixel format by flipping the state of all TEX_* flags // that are set in transforms. int tex_transform(Tex* t, uint transforms) { TIMER_ACCRUE(tc_transform); const uint target_flags = t->flags ^ transforms; for(;;) { // we're finished (all required transforms have been done) if(t->flags == target_flags) return 0; int ret = tex_codec_transform(t, transforms); if(ret != 0) break; } // last chance CHECK_ERR(plain_transform(t, transforms)); return 0; } // change 's pixel format to the new format specified by . // (note: this is equivalent to tex_transform(t, t->flags^new_flags). int tex_transform_to(Tex* t, uint new_flags) { const uint transforms = t->flags ^ new_flags; return tex_transform(t, transforms); } //----------------------------------------------------------------------------- // returns a pointer to the image data (pixels), taking into account any // header(s) that may come before it. see Tex.hm comment above. u8* tex_get_data(const Tex* t) { if(tex_validate(t) < 0) return 0; u8* p = (u8*)mem_get_ptr(t->hm); if(!p) return 0; return p + t->ofs; } static void add_level_size(uint UNUSED(level), uint UNUSED(level_w), uint UNUSED(level_h), const u8* restrict UNUSED(level_data), size_t level_data_size, void* restrict ctx) { size_t* ptotal_size = (size_t*)ctx; *ptotal_size += level_data_size; } // return total byte size of the image pixels. (including mipmaps!) // this is preferable to calculating manually because it's // less error-prone (e.g. confusing bits_per_pixel with bytes). size_t tex_img_size(const Tex* t) { if(tex_validate(t) < 0) return 0; const int levels_to_skip = (t->flags & TEX_MIPMAPS)? 0 : TEX_BASE_LEVEL_ONLY; const uint data_padding = (t->flags & TEX_DXT)? 4 : 1; size_t out_size = 0; tex_util_foreach_mipmap(t->w, t->h, t->bpp, 0, levels_to_skip, data_padding, add_level_size, &out_size); return out_size; } //----------------------------------------------------------------------------- // return the minimum header size (i.e. offset to pixel data) of the // file format indicated by 's extension (that is all it need contain: // e.g. ".bmp"). returns 0 on error (i.e. no codec found). // this can be used to optimize calls to tex_write: when allocating the // buffer that will hold the image, allocate this much extra and // pass the pointer as base+hdr_size. this allows writing the header // directly into the output buffer and makes for zero-copy IO. size_t tex_hdr_size(const char* fn) { const TexCodecVTbl* c; CHECK_ERR(tex_codec_for_filename(fn, &c)); return c->hdr_size(0); } // write the specified texture to disk. // note: cannot be made const because the image may have to be // transformed to write it out in the format determined by 's extension. int tex_write(Tex* t, const char* fn) { CHECK_ERR(validate_format(t->bpp, t->flags)); // we could be clever here and avoid the extra alloc if our current // memory block ensued from the same kind of texture file. this is // most likely the case if in_img == + c->hdr_size(0). // this would make for zero-copy IO. DynArray da; const size_t max_out_size = tex_img_size(t)*4 + 256*KiB; RETURN_ERR(da_alloc(&da, max_out_size)); const TexCodecVTbl* c; CHECK_ERR(tex_codec_for_filename(fn, &c)); // encode into int err; size_t rounded_size; ssize_t bytes_written; err = c->encode(t, &da); if(err < 0) { debug_printf("tex_write (%s): %d", c->name, err); debug_warn("tex_writefailed"); goto fail; } // write to disk rounded_size = round_up(da.cur_size, FILE_BLOCK_SIZE); (void)da_set_size(&da, rounded_size); bytes_written = vfs_store(fn, da.base, da.pos); debug_assert(bytes_written == (ssize_t)da.pos); fail: (void)da_free(&da); return err; }