/** * ========================================================================= * File : byte_order.cpp * Project : 0 A.D. * Description : byte order (endianness) support routines. * ========================================================================= */ // license: GPL; see lib/license.txt #include "precompiled.h" #include "byte_order.h" #include "bits.h" #ifndef swap16 u16 swap16(const u16 x) { return (u16)(((x & 0xff) << 8) | (x >> 8)); } u32 swap32(const u32 x) { return (x << 24) | (x >> 24) | ((x << 8) & 0x00ff0000) | ((x >> 8) & 0x0000ff00); } u64 swap64(const u64 x) { const u32 lo = (u32)(x & 0xFFFFFFFF); const u32 hi = (u32)(x >> 32); u64 ret = swap32(lo); ret <<= 32; // careful: must shift var of type u64, not u32 ret |= swap32(hi); return ret; } #endif // #ifndef swap16 //----------------------------------------------------------------------------- u16 to_le16(u16 x) { #if BYTE_ORDER == BIG_ENDIAN return swap16(x); #else return x; #endif } u32 to_le32(u32 x) { #if BYTE_ORDER == BIG_ENDIAN return swap32(x); #else return x; #endif } u64 to_le64(u64 x) { #if BYTE_ORDER == BIG_ENDIAN return swap64(x); #else return x; #endif } u16 to_be16(u16 x) { #if BYTE_ORDER == BIG_ENDIAN return x; #else return swap16(x); #endif } u32 to_be32(u32 x) { #if BYTE_ORDER == BIG_ENDIAN return x; #else return swap32(x); #endif } u64 to_be64(u64 x) { #if BYTE_ORDER == BIG_ENDIAN return x; #else return swap64(x); #endif } u16 read_le16(const void* p) { return to_le16(*(u16*)p); } u32 read_le32(const void* p) { return to_le32(*(u32*)p); } u64 read_le64(const void* p) { return to_le64(*(u64*)p); } u16 read_be16(const void* p) { return to_be16(*(u16*)p); } u32 read_be32(const void* p) { return to_be32(*(u32*)p); } u64 read_be64(const void* p) { return to_be64(*(u64*)p); } void write_le16(void* p, u16 x) { *(u16*)p = to_le16(x); } void write_le32(void* p, u32 x) { *(u32*)p = to_le32(x); } void write_le64(void* p, u64 x) { *(u64*)p = to_le64(x); } void write_be16(void* p, u16 x) { *(u16*)p = to_be16(x); } void write_be32(void* p, u32 x) { *(u32*)p = to_be32(x); } void write_be64(void* p, u64 x) { *(u64*)p = to_be64(x); } u64 movzx_le64(const u8* p, size_t size_bytes) { u64 number = 0; for(uint i = 0; i < std::min(size_bytes, (size_t)8u); i++) number |= ((u64)p[i]) << (i*8); return number; } u64 movzx_be64(const u8* p, size_t size_bytes) { u64 number = 0; for(uint i = 0; i < std::min(size_bytes, (size_t)8u); i++) { number <<= 8; number |= p[i]; } return number; } static inline i64 SignExtend(u64 bits, size_t size_bytes) { // no point in sign-extending if >= 8 bytes were requested if(size_bytes < 8) { const u64 sign_bit = BIT64((size_bytes*8)-1); // number would be negative in the smaller type, // so sign-extend, i.e. set all more significant bits. if(bits & sign_bit) { const u64 valid_bit_mask = (sign_bit+sign_bit)-1; bits |= ~valid_bit_mask; } } const i64 number = static_cast(bits); return number; } i64 movsx_le64(const u8* p, size_t size_bytes) { const u64 number = movzx_le64(p, size_bytes); return SignExtend(number, size_bytes); } i64 movsx_be64(const u8* p, size_t size_bytes) { const u64 number = movzx_be64(p, size_bytes); return SignExtend(number, size_bytes); }