/* Copyright (C) 2020 Wildfire Games. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * byte order (endianness) support routines. */ #include "precompiled.h" #include "lib/byte_order.h" #include "lib/bits.h" #include #ifndef swap16 u16 swap16(const u16 x) { return (u16)(((x & 0xff) << 8) | (x >> 8)); } #endif #ifndef swap32 u32 swap32(const u32 x) { return (x << 24) | (x >> 24) | ((x << 8) & 0x00ff0000) | ((x >> 8) & 0x0000ff00); } #endif #ifndef swap64 u64 swap64(const u64 x) { const u32 lo = (u32)(x & 0xFFFFFFFF); const u32 hi = (u32)(x >> 32); u64 ret = swap32(lo); ret <<= 32; // careful: must shift var of type u64, not u32 ret |= swap32(hi); return ret; } #endif //----------------------------------------------------------------------------- u16 read_le16(const void* p) { u16 n; memcpy(&n, p, sizeof(n)); return to_le16(n); } u32 read_le32(const void* p) { u32 n; memcpy(&n, p, sizeof(n)); return to_le32(n); } u64 read_le64(const void* p) { u64 n; memcpy(&n, p, sizeof(n)); return to_le64(n); } u16 read_be16(const void* p) { u16 n; memcpy(&n, p, sizeof(n)); return to_be16(n); } u32 read_be32(const void* p) { u32 n; memcpy(&n, p, sizeof(n)); return to_be32(n); } u64 read_be64(const void* p) { u64 n; memcpy(&n, p, sizeof(n)); return to_be64(n); } void write_le16(void* p, u16 x) { u16 n = to_le16(x); memcpy(p, &n, sizeof(n)); } void write_le32(void* p, u32 x) { u32 n = to_le32(x); memcpy(p, &n, sizeof(n)); } void write_le64(void* p, u64 x) { u64 n = to_le64(x); memcpy(p, &n, sizeof(n)); } void write_be16(void* p, u16 x) { u16 n = to_be16(x); memcpy(p, &n, sizeof(n)); } void write_be32(void* p, u32 x) { u32 n = to_be32(x); memcpy(p, &n, sizeof(n)); } void write_be64(void* p, u64 x) { u64 n = to_be64(x); memcpy(p, &n, sizeof(n)); } u64 movzx_le64(const u8* p, size_t size_bytes) { u64 number = 0; for(size_t i = 0; i < std::min(size_bytes, (size_t)8u); i++) number |= ((u64)p[i]) << (i*8); return number; } u64 movzx_be64(const u8* p, size_t size_bytes) { u64 number = 0; for(size_t i = 0; i < std::min(size_bytes, (size_t)8u); i++) { number <<= 8; number |= p[i]; } return number; } static inline i64 SignExtend(u64 bits, size_t size_bytes) { // no point in sign-extending if >= 8 bytes were requested if(size_bytes < 8) { const u64 sign_bit = Bit((size_bytes*8)-1); // number would be negative in the smaller type, // so sign-extend, i.e. set all more significant bits. if(bits & sign_bit) { const u64 valid_bit_mask = (sign_bit+sign_bit)-1; bits |= ~valid_bit_mask; } } const i64 number = static_cast(bits); return number; } i64 movsx_le64(const u8* p, size_t size_bytes) { const u64 number = movzx_le64(p, size_bytes); return SignExtend(number, size_bytes); } i64 movsx_be64(const u8* p, size_t size_bytes) { const u64 number = movzx_be64(p, size_bytes); return SignExtend(number, size_bytes); }