1
1
forked from 0ad/0ad
0ad/source/simulation2/helpers/Spatial.h
wraitii 5b46ce0778 Use templates to replace explicit serialization helpers.
By using templates appripriately we can remove the need for explicit
specification of serializers, making it easier to serialize container
types and to write new serialization helpers.

Direct serialization calls haven't been replaced in this diff.

Comments by: vladislavbelov
Differential Revision: https://code.wildfiregames.com/D3207
This was SVN commit r24427.
2020-12-19 09:10:37 +00:00

571 lines
16 KiB
C++

/* Copyright (C) 2016 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_SPATIAL
#define INCLUDED_SPATIAL
#include "simulation2/serialization/SerializeTemplates.h"
/**
* A very basic subdivision scheme for finding items in ranges.
* Items are stored in lists in dynamic-sized divisions.
* Items have a size (min/max values of their axis-aligned bounding box)
* and are stored in all divisions overlapping that area.
*
* It is the caller's responsibility to ensure items are only added
* once, aren't removed unless they've been added, etc, and that
* Move/Remove are called with the same coordinates originally passed
* to Add (since this class doesn't remember which divisions an item
* occupies).
*/
class SpatialSubdivision
{
struct SubDivisionGrid
{
std::vector<uint32_t> items;
inline void push_back(uint32_t value)
{
items.push_back(value);
}
inline void erase(int index)
{
// Delete by swapping with the last element then popping
if ((int)items.size() > 1) // but only if we have more than 1 elements
items[index] = items.back();
items.pop_back();
}
void copy_items_at_end(std::vector<uint32_t>& out) const
{
out.insert(out.end(), items.begin(), items.end());
}
};
entity_pos_t m_DivisionSize;
SubDivisionGrid* m_Divisions;
uint32_t m_DivisionsW;
uint32_t m_DivisionsH;
friend struct SerializeHelper<SpatialSubdivision>;
public:
SpatialSubdivision() : m_Divisions(NULL), m_DivisionsW(0), m_DivisionsH(0)
{
}
~SpatialSubdivision()
{
delete[] m_Divisions;
}
SpatialSubdivision(const SpatialSubdivision& rhs)
{
m_DivisionSize = rhs.m_DivisionSize;
m_DivisionsW = rhs.m_DivisionsW;
m_DivisionsH = rhs.m_DivisionsH;
size_t n = m_DivisionsW * m_DivisionsH;
m_Divisions = new SubDivisionGrid[n];
for (size_t i = 0; i < n; ++i)
m_Divisions[i] = rhs.m_Divisions[i]; // just fall back to piecemeal copy
}
SpatialSubdivision& operator=(const SpatialSubdivision& rhs)
{
if (this != &rhs)
{
m_DivisionSize = rhs.m_DivisionSize;
size_t n = rhs.m_DivisionsW * rhs.m_DivisionsH;
if (m_DivisionsW != rhs.m_DivisionsW || m_DivisionsH != rhs.m_DivisionsH)
Create(n); // size changed, recreate
m_DivisionsW = rhs.m_DivisionsW;
m_DivisionsH = rhs.m_DivisionsH;
for (size_t i = 0; i < n; ++i)
m_Divisions[i] = rhs.m_Divisions[i]; // just fall back to piecemeal copy
}
return *this;
}
inline entity_pos_t GetDivisionSize() const { return m_DivisionSize; }
inline uint32_t GetWidth() const { return m_DivisionsW; }
inline uint32_t GetHeight() const { return m_DivisionsH; }
void Create(size_t count)
{
delete[] m_Divisions;
m_Divisions = new SubDivisionGrid[count];
}
/**
* Equivalence test (ignoring order of items within each subdivision)
*/
bool operator==(const SpatialSubdivision& rhs) const
{
if (m_DivisionSize != rhs.m_DivisionSize || m_DivisionsW != rhs.m_DivisionsW || m_DivisionsH != rhs.m_DivisionsH)
return false;
uint32_t n = m_DivisionsH * m_DivisionsW;
for (uint32_t i = 0; i < n; ++i)
{
if (m_Divisions[i].items.size() != rhs.m_Divisions[i].items.size())
return false;
// don't bother optimizing this, this is only used in the TESTING SUITE
std::vector<uint32_t> a = m_Divisions[i].items;
std::vector<uint32_t> b = rhs.m_Divisions[i].items;
std::sort(a.begin(), a.end());
std::sort(b.begin(), b.end());
if (a != b)
return false;
}
return true;
}
inline bool operator!=(const SpatialSubdivision& rhs) const
{
return !(*this == rhs);
}
void Reset(entity_pos_t maxX, entity_pos_t maxZ, entity_pos_t divisionSize)
{
m_DivisionSize = divisionSize;
m_DivisionsW = (maxX / m_DivisionSize).ToInt_RoundToInfinity();
m_DivisionsH = (maxZ / m_DivisionSize).ToInt_RoundToInfinity();
Create(m_DivisionsW * m_DivisionsH);
}
/**
* Add an item with the given 'to' size.
* The item must not already be present.
*/
void Add(uint32_t item, CFixedVector2D toMin, CFixedVector2D toMax)
{
ENSURE(toMin.X <= toMax.X && toMin.Y <= toMax.Y);
u32 i0 = GetI0(toMin.X);
u32 j0 = GetJ0(toMin.Y);
u32 i1 = GetI1(toMax.X);
u32 j1 = GetJ1(toMax.Y);
for (u32 j = j0; j <= j1; ++j)
{
for (u32 i = i0; i <= i1; ++i)
{
m_Divisions[i + j*m_DivisionsW].push_back(item);
}
}
}
/**
* Remove an item with the given 'from' size.
* The item should already be present.
* The size must match the size that was last used when adding the item.
*/
void Remove(uint32_t item, CFixedVector2D fromMin, CFixedVector2D fromMax)
{
ENSURE(fromMin.X <= fromMax.X && fromMin.Y <= fromMax.Y);
u32 i0 = GetI0(fromMin.X);
u32 j0 = GetJ0(fromMin.Y);
u32 i1 = GetI1(fromMax.X);
u32 j1 = GetJ1(fromMax.Y);
for (u32 j = j0; j <= j1; ++j)
{
for (u32 i = i0; i <= i1; ++i)
{
SubDivisionGrid& div = m_Divisions[i + j*m_DivisionsW];
int size = div.items.size();
for (int n = 0; n < size; ++n)
{
if (div.items[n] == item)
{
div.erase(n);
break;
}
}
}
}
}
/**
* Equivalent to Remove() then Add(), but potentially faster.
*/
void Move(uint32_t item, CFixedVector2D fromMin, CFixedVector2D fromMax, CFixedVector2D toMin, CFixedVector2D toMax)
{
// Skip the work if we're staying in the same divisions
if (GetIndex0(fromMin) == GetIndex0(toMin) && GetIndex1(fromMax) == GetIndex1(toMax))
return;
Remove(item, fromMin, fromMax);
Add(item, toMin, toMax);
}
/**
* Convenience function for Add() of individual points.
* (Note that points on a boundary may occupy multiple divisions.)
*/
void Add(uint32_t item, CFixedVector2D to)
{
Add(item, to, to);
}
/**
* Convenience function for Remove() of individual points.
*/
void Remove(uint32_t item, CFixedVector2D from)
{
Remove(item, from, from);
}
/**
* Convenience function for Move() of individual points.
*/
void Move(uint32_t item, CFixedVector2D from, CFixedVector2D to)
{
Move(item, from, from, to, to);
}
/**
* Returns a sorted list of unique items that includes all items
* within the given axis-aligned square range.
*/
void GetInRange(std::vector<uint32_t>& out, CFixedVector2D posMin, CFixedVector2D posMax) const
{
out.clear();
ENSURE(posMin.X <= posMax.X && posMin.Y <= posMax.Y);
u32 i0 = GetI0(posMin.X);
u32 j0 = GetJ0(posMin.Y);
u32 i1 = GetI1(posMax.X);
u32 j1 = GetJ1(posMax.Y);
for (u32 j = j0; j <= j1; ++j)
{
for (u32 i = i0; i <= i1; ++i)
{
m_Divisions[i + j*m_DivisionsW].copy_items_at_end(out);
}
}
// some buildings span several tiles, so we need to make it unique
std::sort(out.begin(), out.end());
out.erase(std::unique(out.begin(), out.end()), out.end());
}
/**
* Returns a sorted list of unique items that includes all items
* within the given circular distance of the given point.
*/
void GetNear(std::vector<uint32_t>& out, CFixedVector2D pos, entity_pos_t range) const
{
// TODO: be cleverer and return a circular pattern of divisions,
// not this square over-approximation
CFixedVector2D r(range, range);
GetInRange(out, pos - r, pos + r);
}
private:
// Helper functions for translating coordinates into division indexes
// (avoiding out-of-bounds accesses, and rounding correctly so that
// points precisely between divisions are counted in both):
uint32_t GetI0(entity_pos_t x) const
{
return Clamp((x / m_DivisionSize).ToInt_RoundToInfinity()-1, 0, (int)m_DivisionsW-1);
}
uint32_t GetJ0(entity_pos_t z) const
{
return Clamp((z / m_DivisionSize).ToInt_RoundToInfinity()-1, 0, (int)m_DivisionsH-1);
}
uint32_t GetI1(entity_pos_t x) const
{
return Clamp((x / m_DivisionSize).ToInt_RoundToNegInfinity(), 0, (int)m_DivisionsW-1);
}
uint32_t GetJ1(entity_pos_t z) const
{
return Clamp((z / m_DivisionSize).ToInt_RoundToNegInfinity(), 0, (int)m_DivisionsH-1);
}
uint32_t GetIndex0(CFixedVector2D pos) const
{
return GetI0(pos.X) + GetJ0(pos.Y)*m_DivisionsW;
}
uint32_t GetIndex1(CFixedVector2D pos) const
{
return GetI1(pos.X) + GetJ1(pos.Y)*m_DivisionsW;
}
};
/**
* Serialization helper template for SpatialSubdivision
*/
template<>
struct SerializeHelper<SpatialSubdivision>
{
void operator()(ISerializer& serialize, const char* UNUSED(name), SpatialSubdivision& value)
{
serialize.NumberFixed_Unbounded("div size", value.m_DivisionSize);
serialize.NumberU32_Unbounded("divs w", value.m_DivisionsW);
serialize.NumberU32_Unbounded("divs h", value.m_DivisionsH);
size_t count = value.m_DivisionsH * value.m_DivisionsW;
for (size_t i = 0; i < count; ++i)
Serializer(serialize, "subdiv items", value.m_Divisions[i].items);
}
void operator()(IDeserializer& serialize, const char* UNUSED(name), SpatialSubdivision& value)
{
serialize.NumberFixed_Unbounded("div size", value.m_DivisionSize);
serialize.NumberU32_Unbounded("divs w", value.m_DivisionsW);
serialize.NumberU32_Unbounded("divs h", value.m_DivisionsH);
size_t count = value.m_DivisionsW * value.m_DivisionsH;
value.Create(count);
for (size_t i = 0; i < count; ++i)
Serializer(serialize, "subdiv items", value.m_Divisions[i].items);
}
};
/**
* A basic square subdivision scheme for finding entities in range
* More efficient than SpatialSubdivision, but a bit less precise
* (so the querier will get more entities to perform tests on).
*
* Items are stored in vectors in fixed-size divisions.
*
* Items have a size (min/max values of their axis-aligned bounding box).
* If that size is higher than a subdivision's size, they're stored in the "general" vector
* This means that if too many objects have a size that's big, it'll end up being slow
* We want subdivisions to be as small as possible yet contain as many items as possible.
*
* It is the caller's responsibility to ensure items are only added once, aren't removed
* unless they've been added, etc, and that Move/Remove are called with the same coordinates
* originally passed to Add (since this class doesn't remember which divisions an item
* occupies).
*
* TODO: If a unit size were to change, it would need to be updated (that doesn't happen for now)
*/
class FastSpatialSubdivision
{
private:
static const int SUBDIVISION_SIZE = 20; // bigger than most buildings and entities
std::vector<entity_id_t> m_OverSizedData;
std::vector<entity_id_t>* m_SpatialDivisionsData; // fixed size array of subdivisions
size_t m_ArrayWidth; // number of columns in m_SpatialDivisionsData
inline size_t Index(fixed position) const
{
return Clamp((position / SUBDIVISION_SIZE).ToInt_RoundToZero(), 0, (int)m_ArrayWidth-1);
}
inline size_t SubdivisionIdx(CFixedVector2D position) const
{
return Index(position.X) + Index(position.Y)*m_ArrayWidth;
}
/**
* Efficiently erase from a vector by swapping with the last element and popping it.
* Returns true if the element was found and erased, else returns false.
*/
bool EraseFrom(std::vector<entity_id_t>& vector, entity_id_t item)
{
std::vector<entity_id_t>::iterator it = std::find(vector.begin(), vector.end(), item);
if (it == vector.end())
return false;
*it = vector.back();
vector.pop_back();
return true;
}
public:
FastSpatialSubdivision() :
m_SpatialDivisionsData(NULL), m_ArrayWidth(0)
{
}
FastSpatialSubdivision(const FastSpatialSubdivision& other) :
m_SpatialDivisionsData(NULL), m_ArrayWidth(0)
{
Reset(other.m_ArrayWidth);
std::copy(&other.m_SpatialDivisionsData[0], &other.m_SpatialDivisionsData[m_ArrayWidth*m_ArrayWidth], m_SpatialDivisionsData);
}
~FastSpatialSubdivision()
{
delete[] m_SpatialDivisionsData;
}
void Reset(size_t arrayWidth)
{
delete[] m_SpatialDivisionsData;
m_ArrayWidth = arrayWidth;
m_SpatialDivisionsData = new std::vector<entity_id_t>[m_ArrayWidth*m_ArrayWidth];
m_OverSizedData.clear();
}
void Reset(fixed w, fixed h)
{
ENSURE(w >= fixed::Zero() && h >= fixed::Zero());
size_t arrayWidth = std::max((w / SUBDIVISION_SIZE).ToInt_RoundToZero(), (h / SUBDIVISION_SIZE).ToInt_RoundToZero()) + 1;
Reset(arrayWidth);
}
FastSpatialSubdivision& operator=(const FastSpatialSubdivision& other)
{
if (this != &other)
{
Reset(other.m_ArrayWidth);
std::copy(&other.m_SpatialDivisionsData[0], &other.m_SpatialDivisionsData[m_ArrayWidth*m_ArrayWidth], m_SpatialDivisionsData);
}
return *this;
}
bool operator==(const FastSpatialSubdivision& other) const
{
if (m_ArrayWidth != other.m_ArrayWidth)
return false;
if (m_OverSizedData != other.m_OverSizedData)
return false;
for (size_t idx = 0; idx < m_ArrayWidth*m_ArrayWidth; ++idx)
if (m_SpatialDivisionsData[idx] != other.m_SpatialDivisionsData[idx])
return false;
return true;
}
inline bool operator!=(const FastSpatialSubdivision& rhs) const
{
return !(*this == rhs);
}
/**
* Add an item.
*/
void Add(entity_id_t item, CFixedVector2D position, u32 size)
{
if (size > SUBDIVISION_SIZE)
{
if (std::find(m_OverSizedData.begin(), m_OverSizedData.end(), item) == m_OverSizedData.end())
m_OverSizedData.push_back(item);
}
else
{
std::vector<entity_id_t>& subdivision = m_SpatialDivisionsData[SubdivisionIdx(position)];
if (std::find(subdivision.begin(), subdivision.end(), item) == subdivision.end())
subdivision.push_back(item);
}
}
/**
* Remove an item.
* Position must be where we expect to find it, or we won't find it.
*/
void Remove(entity_id_t item, CFixedVector2D position, u32 size)
{
if (size > SUBDIVISION_SIZE)
EraseFrom(m_OverSizedData, item);
else
{
std::vector<entity_id_t>& subdivision = m_SpatialDivisionsData[SubdivisionIdx(position)];
EraseFrom(subdivision, item);
}
}
/**
* Equivalent to Remove() then Add(), but slightly faster.
* In particular for big objects nothing needs to be done.
*/
void Move(entity_id_t item, CFixedVector2D oldPosition, CFixedVector2D newPosition, u32 size)
{
if (size > SUBDIVISION_SIZE)
return;
if (SubdivisionIdx(newPosition) == SubdivisionIdx(oldPosition))
return;
std::vector<entity_id_t>& oldSubdivision = m_SpatialDivisionsData[SubdivisionIdx(oldPosition)];
if (EraseFrom(oldSubdivision, item))
{
std::vector<entity_id_t>& newSubdivision = m_SpatialDivisionsData[SubdivisionIdx(newPosition)];
newSubdivision.push_back(item);
}
}
/**
* Returns a (non sorted) list of items that are either in the square or close to it.
* It's the responsibility of the querier to do proper distance checking and entity sorting.
*/
void GetInRange(std::vector<entity_id_t>& out, CFixedVector2D posMin, CFixedVector2D posMax) const
{
size_t minX = Index(posMin.X);
size_t minY = Index(posMin.Y);
size_t maxX = Index(posMax.X) + 1;
size_t maxY = Index(posMax.Y) + 1;
// Now expand the subdivisions by one so we make sure we've got all elements potentially in range.
// Also make sure min >= 0 and max <= width
minX = minX > 0 ? minX-1 : 0;
minY = minY > 0 ? minY-1 : 0;
maxX = maxX < m_ArrayWidth ? maxX+1 : m_ArrayWidth;
maxY = maxY < m_ArrayWidth ? maxY+1 : m_ArrayWidth;
ENSURE(out.empty() && "GetInRange: out is not clean");
// Add oversized items, they can be anywhere
out.insert(out.end(), m_OverSizedData.begin(), m_OverSizedData.end());
for (size_t Y = minY; Y < maxY; ++Y)
{
for (size_t X = minX; X < maxX; ++X)
{
std::vector<entity_id_t>& subdivision = m_SpatialDivisionsData[X + Y*m_ArrayWidth];
if (!subdivision.empty())
out.insert(out.end(), subdivision.begin(), subdivision.end());
}
}
}
/**
* Returns a (non sorted) list of items that are either in the circle or close to it.
* It's the responsibility of the querier to do proper distance checking and entity sorting.
*/
void GetNear(std::vector<entity_id_t>& out, CFixedVector2D pos, entity_pos_t range) const
{
// Because the subdivision size is rather big wrt typical ranges,
// this square over-approximation is hopefully not too bad.
CFixedVector2D r(range, range);
GetInRange(out, pos - r, pos + r);
}
size_t GetDivisionSize() const
{
return SUBDIVISION_SIZE;
}
size_t GetWidth() const
{
return m_ArrayWidth;
}
};
#endif // INCLUDED_SPATIAL