
0 A.D. CODE CONVENTIONS

Dave Loeser Jan Wassenberg

May 5, 2007

Contents

1 Objective 2

2 Layout 2
2.1 Formatting . 2
2.2 Brackets . 3

3 Commenting 3

4 Documentation 4

5 Naming Conventions 5
5.1 Filenames . 5
5.2 Namespaces . 5

5.2.1 Global Scope . 5
5.3 Classes . 5
5.4 Functions . 6
5.5 Variables . 6
5.6 Example . 6

6 Standard Template Library 8

7 Singletons 8

8 Strings 8

1

1 Objective

The goal of this document is to provide a standardized coding methodology
for the 0 A.D. programming team. With but a few guidelines for layout,
commenting and naming conventions, the team should feel as if they are
reading their own code when reading someone else’s code.

2 Layout

2.1 Formatting

Most editors allow for the conversion of tabs to spaces and most people prefer
the use of tabs versus wearing out the spacebar. The size of the tabs is up
to each programmer – just ensure that you are using tabs.

Limit the length of a line of code to not more than 80 characters; not everyone
has a 1600x1200 display. Functions that have many parameters and extend
over 80 characters should be written as:

SomeFunction(

HWND hWnd,

BITMAP bmDeviceBitmap,

long lAnimationFrame);

instead of:

SomeFunction(HWND hWnd,

BITMAP bmDeviceBitmap,

long lAnimationFrame);

Although the second method is commonly used, it is more difficult to main-
tain (if the name of the function changed, you would need to re-align the
parameters).

2

2.2 Brackets

Brackets should be aligned, here’s an example of good bracket placement:

void CGameObject::CleanUp()

{

if(NULL != m_ThisObject)

{

delete m_ThisObject;

}

}

Now we’re not out to save vertical lines on the screen; it’s about being able
to read the code. Therefore, the following style should be avoided:

void CGameObject::CleanUp() {

if(NULL != m_ThisObject) {

delete m_ThisObject;

}

}

3 Commenting

Commenting is a subject that is sure to cause debate, but minimal comments
with maximum expressiveness are preferable. Bad commenting style is shown
below:

void CGameObject::SetModifiedFlag(bool flag)

{

m_ModifiedFlag = flag; // set the modified flag

}

The above comment does not tell us anything that we don’t already know
from reading the code; here’s a better approach:

void CGameObject::SetModifiedFlag(bool flag)

{

// This sets the CGameObject’s modified

// flag, which is used to determine

// if this object needs to be serialized.

m_ModifiedFlag = flag;

}

3

4 Documentation

Each programmer is responsible for properly documenting their code. During
code review the code reviewer will ensure that interfaces or APIs are properly
documented.

If the comments are formatted in a certain way, they will automatically be
extracted and added to the relevant documentation file. It suffices to write
them as follows (sample comment for a class):

/**

* An object that represents a civilian entity.

*

* (Notes regarding usage and possible problems etc...)

**/

For single-line comments, /// can be used as well. The comment text is in-
serted into the documentation, and can additionally be formatted by certain
tags (e.g. @param description for function parameters). For more details,
see the CppDoc documentation.

Each method of a class should be documented as well and here is the sug-
gested method of documenting a member function (continuing with CExample):

class CExample

{

public:

CExample();

~CExample():

/**

* This function does nothing, but is a good example of

* documenting a member function.

* @param dummy A dummy parameter.

**/

void ShowExample(int dummy);

private:

intptr_t m_ExampleData; // Holds the value of this example.

double m_FairlyLongVariableName; // Shows the lining up of comments

};

4

The ctor and dtor need not be commented — everyone knows what they
are and what they do. ShowExample(), on the other hand, provides a brief
comment as to its purpose. You may also want to provide an example of
a method’s usage. Member data is commented on the right side and it is
generally good (when possible) to line up comments for easier reading.

5 Naming Conventions

5.1 Filenames

Filenames can be freely chosen, but to avoid problems on Unix systems, they
should not contain spaces or non-ASCII characters. If the file serves to define
one class, e.g. CEntity, the file would usually be called Entity.h.

5.2 Namespaces

Namespaces are used as a mechanism to express logical grouping.

5.2.1 Global Scope

Symbols belonging to the global namespace should be prefixed with ::. Ex-
ample: The Win32 function ::OutputDebugString() resides in the global
namespace and is written with the scope operator preceding the function
name.

5.3 Classes

Classes should use concise, descriptive names that easily convey their use.

Classes are named using PascalCase - capitalizing each word within the name
visually differentiates them. Example: A class named CGameObject is pre-
ferred over gameObject or cGameObject.

5

5.4 Functions

Functions should use concise, descriptive names that provide innate clues as
to the functionality they provide.

Global and member functions should be named using PascalCase. Exam-
ple: A function named SetModifiedFlag() is preferred over SetFlag() or
setFlag.

5.5 Variables

Variable should use concise, descriptive names that provide innate clues as
to the data that the variable represents.

Member variables should be prefixed with m , but both m camelCase and
m PascalCase may be used according to personal preference (either way, the
prefix ensures clarity). Example: m GameObject is more descriptive than
gobj.

5.6 Example

Here is a sample header file layout, Example.h:

/**

* ===

* File : Example.h

* Project : 0 A.D.

* Description : CExample interface file.

*

* @author TheProgrammer@email.com

* ===

**/

/*

This interface is difficult to write as it really

pertains to nothing and serves no purpose other than to

suggest a documentation scheme.

*/

(continues..)

6

#ifndef INCLUDED_EXAMPLE

#define INCLUDED_EXAMPLE

#include "utils.h"

/**

* CExample

* This serves no purpose other than to

* provide an example of documenting a class.

* Notes regarding usage and possible problems etc...

**/

class CExample

{

public:

CExample();

~CExample():

/**

* This function does nothing, but is a good example of

* documenting a member function.

* @param dummy A dummy parameter.

**/

void ShowExample(int dummy);

protected:

int m_UsefulForDerivedClasses;

private:

uint8_t m_ExampleData; // Holds the value of this example.

int m_RatherLongVariableName; // Shows the lining up of comments

};

#endif // #ifndef INCLUDED_EXAMPLE

From the above we can see that header guards are utilized. Header file
comment blocks show filename, project and author; a short overview follows.

The order of declarations ought to be: public followed by protected and
finally by private.

7

6 Standard Template Library

We will make use of the Standard Template Library (STL). Although we
may be capable of coding list, maps and queues ourselves and do so more
efficiently. Our goal is to create a game not to recreate an existing library.

Having said that, it may make sense to hide some uses of STL objects behind
an interface. This can make the code more readable.

7 Singletons

Much debate regarding the use of global variables has been generated over the
years so we will not re-enter that discussion. The Singleton design pattern
does provide many benefits over that of a pure global variable.

We will make use of the Automatic Singleton Utility as described by Scott
Bilas in article 1.3 of the “Game Programming Gems”, volume I, “An Auto-
matic Singleton Utility”.

8 Strings

A string class has been written, CStr, that should be used instead of directly
using std::string or using C-style strings (i.e. char*).

8

	Objective
	Layout
	Formatting
	Brackets

	Commenting
	Documentation
	Naming Conventions
	Filenames
	Namespaces
	Global Scope

	Classes
	Functions
	Variables
	Example

	Standard Template Library
	Singletons
	Strings

