1
0
forked from 0ad/0ad
0ad/source/renderer/PatchRData.cpp
janwas c0ed950657 had to remove uint and ulong from lib/types.h due to conflict with other library.
this snowballed into a massive search+destroy of the hodgepodge of
mostly equivalent types we had in use (int, uint, unsigned, unsigned
int, i32, u32, ulong, uintN).

it is more efficient to use 64-bit types in 64-bit mode, so the
preferred default is size_t (for anything remotely resembling a size or
index). tile coordinates are ssize_t to allow more efficient conversion
to/from floating point. flags are int because we almost never need more
than 15 distinct bits, bit test/set is not slower and int is fastest to
type. finally, some data that is pretty much directly passed to OpenGL
is now typed accordingly.

after several hours, the code now requires fewer casts and less
guesswork.

other changes:
- unit and player IDs now have an "invalid id" constant in the
respective class to avoid casting and -1
- fix some endian/64-bit bugs in the map (un)packing. added a
convenience function to write/read a size_t.
- ia32: change CPUID interface to allow passing in ecx (required for
cache topology detection, which I need at work). remove some unneeded
functions from asm, replace with intrinsics where possible.

This was SVN commit r5942.
2008-05-11 18:48:32 +00:00

609 lines
17 KiB
C++

#include "precompiled.h"
#include <set>
#include <algorithm>
#include "ps/Pyrogenesis.h"
#include "lib/res/graphics/ogl_tex.h"
#include "graphics/LightEnv.h"
#include "Renderer.h"
#include "renderer/PatchRData.h"
#include "AlphaMapCalculator.h"
#include "ps/CLogger.h"
#include "ps/Profile.h"
#include "ps/Game.h"
#include "ps/World.h"
#include "maths/MathUtil.h"
#include "simulation/LOSManager.h"
#include "graphics/Patch.h"
#include "graphics/Terrain.h"
const ssize_t BlendOffsets[8][2] = {
{ 0, -1 },
{ -1, -1 },
{ -1, 0 },
{ -1, 1 },
{ 0, 1 },
{ 1, 1 },
{ 1, 0 },
{ 1, -1 }
};
///////////////////////////////////////////////////////////////////
// CPatchRData constructor
CPatchRData::CPatchRData(CPatch* patch) : m_Patch(patch), m_VBBase(0), m_VBBlends(0), m_Vertices(0)
{
debug_assert(patch);
Build();
}
///////////////////////////////////////////////////////////////////
// CPatchRData destructor
CPatchRData::~CPatchRData()
{
// delete copy of vertex data
delete[] m_Vertices;
// release vertex buffer chunks
if (m_VBBase) g_VBMan.Release(m_VBBase);
if (m_VBBlends) g_VBMan.Release(m_VBBlends);
}
static Handle GetTerrainTileTexture(CTerrain* terrain,ssize_t gx,ssize_t gz)
{
CMiniPatch* mp=terrain->GetTile(gx,gz);
return mp ? mp->Tex1 : 0;
}
const float uvFactor = 0.125f / sqrt(2.f);
static void CalculateUV(float uv[2], ssize_t x, ssize_t z)
{
// The UV axes are offset 45 degrees from XZ
uv[0] = ( x-z)*uvFactor;
uv[1] = (-x-z)*uvFactor;
}
struct STmpSplat {
Handle m_Texture;
u16 m_Indices[4];
};
void CPatchRData::BuildBlends()
{
m_BlendIndices.clear();
m_BlendSplats.clear();
m_BlendVertices.clear();
m_BlendVertexIndices.clear();
CTerrain* terrain=m_Patch->m_Parent;
// temporary list of splats
std::vector<STmpSplat> splats;
// set of textures used for splats
std::set<Handle> splatTextures;
// for each tile in patch ..
for (ssize_t j=0;j<PATCH_SIZE;j++) {
for (ssize_t i=0;i<PATCH_SIZE;i++) {
ssize_t gx,gz;
CMiniPatch* mp=&m_Patch->m_MiniPatches[j][i];
mp->GetTileIndex(gx,gz);
// build list of textures of higher priority than current tile that are used by neighbouring tiles
std::vector<STex> neighbourTextures;
for (int m=-1;m<=1;m++) {
for (int k=-1;k<=1;k++) {
CMiniPatch* nmp=terrain->GetTile(gx+k,gz+m);
if (nmp && nmp->Tex1 != mp->Tex1) {
if (nmp->Tex1Priority>mp->Tex1Priority || (nmp->Tex1Priority==mp->Tex1Priority && nmp->Tex1>mp->Tex1)) {
STex tex;
tex.m_Handle=nmp->Tex1;
tex.m_Priority=nmp->Tex1Priority;
if (std::find(neighbourTextures.begin(),neighbourTextures.end(),tex)==neighbourTextures.end()) {
neighbourTextures.push_back(tex);
}
}
}
}
}
if (neighbourTextures.size()>0) {
// sort textures from lowest to highest priority
std::sort(neighbourTextures.begin(),neighbourTextures.end());
// for each of the neighbouring textures ..
size_t count=neighbourTextures.size();
for (size_t k=0;k<count;++k) {
// now build the grid of blends dependent on whether the tile adjacent to the current tile
// uses the current neighbour texture
BlendShape8 shape;
for (size_t m=0;m<8;m++) {
ssize_t ox=gx+BlendOffsets[m][1];
ssize_t oz=gz+BlendOffsets[m][0];
// get texture on adjacent tile
Handle atex=GetTerrainTileTexture(terrain,ox,oz);
// fill 0/1 into shape array
shape[m]=(atex==neighbourTextures[k].m_Handle) ? 0 : 1;
}
// calculate the required alphamap and the required rotation of the alphamap from blendshape
unsigned int alphamapflags;
int alphamap=CAlphaMapCalculator::Calculate(shape,alphamapflags);
// now actually render the blend tile (if we need one)
if (alphamap!=-1) {
float u0=g_Renderer.m_AlphaMapCoords[alphamap].u0;
float u1=g_Renderer.m_AlphaMapCoords[alphamap].u1;
float v0=g_Renderer.m_AlphaMapCoords[alphamap].v0;
float v1=g_Renderer.m_AlphaMapCoords[alphamap].v1;
if (alphamapflags & BLENDMAP_FLIPU) {
// flip u
float t=u0;
u0=u1;
u1=t;
}
if (alphamapflags & BLENDMAP_FLIPV) {
// flip v
float t=v0;
v0=v1;
v1=t;
}
int base=0;
if (alphamapflags & BLENDMAP_ROTATE90) {
// rotate 1
base=1;
} else if (alphamapflags & BLENDMAP_ROTATE180) {
// rotate 2
base=2;
} else if (alphamapflags & BLENDMAP_ROTATE270) {
// rotate 3
base=3;
}
SBlendVertex vtx[4];
vtx[(base+0)%4].m_AlphaUVs[0]=u0;
vtx[(base+0)%4].m_AlphaUVs[1]=v0;
vtx[(base+1)%4].m_AlphaUVs[0]=u1;
vtx[(base+1)%4].m_AlphaUVs[1]=v0;
vtx[(base+2)%4].m_AlphaUVs[0]=u1;
vtx[(base+2)%4].m_AlphaUVs[1]=v1;
vtx[(base+3)%4].m_AlphaUVs[0]=u0;
vtx[(base+3)%4].m_AlphaUVs[1]=v1;
ssize_t vsize=PATCH_SIZE+1;
SBlendVertex dst;
const size_t vindex=m_BlendVertices.size();
const SBaseVertex& vtx0=m_Vertices[(j*vsize)+i];
CalculateUV(dst.m_UVs, gx, gz);
dst.m_AlphaUVs[0]=vtx[0].m_AlphaUVs[0];
dst.m_AlphaUVs[1]=vtx[0].m_AlphaUVs[1];
dst.m_LOSColor=vtx0.m_LOSColor;
dst.m_Position=vtx0.m_Position;
m_BlendVertices.push_back(dst);
m_BlendVertexIndices.push_back((j*vsize)+i);
const SBaseVertex& vtx1=m_Vertices[(j*vsize)+i+1];
CalculateUV(dst.m_UVs, gx+1, gz);
dst.m_AlphaUVs[0]=vtx[1].m_AlphaUVs[0];
dst.m_AlphaUVs[1]=vtx[1].m_AlphaUVs[1];
dst.m_LOSColor=vtx1.m_LOSColor;
dst.m_Position=vtx1.m_Position;
m_BlendVertices.push_back(dst);
m_BlendVertexIndices.push_back((j*vsize)+i+1);
const SBaseVertex& vtx2=m_Vertices[((j+1)*vsize)+i+1];
CalculateUV(dst.m_UVs, gx+1, gz+1);
dst.m_AlphaUVs[0]=vtx[2].m_AlphaUVs[0];
dst.m_AlphaUVs[1]=vtx[2].m_AlphaUVs[1];
dst.m_LOSColor=vtx2.m_LOSColor;
dst.m_Position=vtx2.m_Position;
m_BlendVertices.push_back(dst);
m_BlendVertexIndices.push_back(((j+1)*vsize)+i+1);
const SBaseVertex& vtx3=m_Vertices[((j+1)*vsize)+i];
CalculateUV(dst.m_UVs, gx, gz+1);
dst.m_AlphaUVs[0]=vtx[3].m_AlphaUVs[0];
dst.m_AlphaUVs[1]=vtx[3].m_AlphaUVs[1];
dst.m_LOSColor=vtx3.m_LOSColor;
dst.m_Position=vtx3.m_Position;
m_BlendVertices.push_back(dst);
m_BlendVertexIndices.push_back(((j+1)*vsize)+i);
// build a splat for this quad
STmpSplat splat;
splat.m_Texture=neighbourTextures[k].m_Handle;
splat.m_Indices[0]=(u16)(vindex);
splat.m_Indices[1]=(u16)(vindex+1);
splat.m_Indices[2]=(u16)(vindex+2);
splat.m_Indices[3]=(u16)(vindex+3);
splats.push_back(splat);
// add this texture to set of unique splat textures
splatTextures.insert(splat.m_Texture);
}
}
}
}
}
// build vertex data
if (m_VBBlends) {
// release existing vertex buffer chunk
g_VBMan.Release(m_VBBlends);
m_VBBlends=0;
}
if (m_BlendVertices.size()) {
m_VBBlends=g_VBMan.Allocate(sizeof(SBlendVertex),m_BlendVertices.size(),true);
m_VBBlends->m_Owner->UpdateChunkVertices(m_VBBlends,&m_BlendVertices[0]);
// now build outgoing splats
m_BlendSplats.resize(splatTextures.size());
size_t splatCount=0;
debug_assert(m_VBBlends->m_Index < 65536);
unsigned short base = (unsigned short)m_VBBlends->m_Index;
std::set<Handle>::iterator iter=splatTextures.begin();
for (;iter!=splatTextures.end();++iter) {
Handle tex=*iter;
SSplat& splat=m_BlendSplats[splatCount];
splat.m_IndexStart=m_BlendIndices.size();
splat.m_Texture=tex;
for (size_t k=0;k<splats.size();k++) {
if (splats[k].m_Texture==tex) {
m_BlendIndices.push_back(splats[k].m_Indices[0]+base);
m_BlendIndices.push_back(splats[k].m_Indices[1]+base);
m_BlendIndices.push_back(splats[k].m_Indices[2]+base);
m_BlendIndices.push_back(splats[k].m_Indices[3]+base);
splat.m_IndexCount+=4;
}
}
splatCount++;
}
}
}
void CPatchRData::BuildIndices()
{
// must have allocated some vertices before trying to build corresponding indices
debug_assert(m_VBBase);
// number of vertices in each direction in each patch
ssize_t vsize=PATCH_SIZE+1;
// release existing indices and bins
m_Indices.clear();
m_ShadowMapIndices.clear();
m_Splats.clear();
// build grid of textures on this patch and boundaries of adjacent patches
std::vector<Handle> textures;
Handle texgrid[PATCH_SIZE][PATCH_SIZE];
for (ssize_t j=0;j<PATCH_SIZE;j++) {
for (ssize_t i=0;i<PATCH_SIZE;i++) {
Handle h=m_Patch->m_MiniPatches[j][i].Tex1;
texgrid[j][i]=h;
if (std::find(textures.begin(),textures.end(),h)==textures.end()) {
textures.push_back(h);
}
}
}
// now build base splats from interior textures
m_Splats.resize(textures.size());
// build indices for base splats
size_t base=m_VBBase->m_Index;
for (size_t i=0;i<m_Splats.size();i++) {
Handle h=textures[i];
SSplat& splat=m_Splats[i];
splat.m_Texture=h;
splat.m_IndexStart=m_Indices.size();
for (ssize_t j=0;j<PATCH_SIZE;j++) {
for (ssize_t i=0;i<PATCH_SIZE;i++) {
if (texgrid[j][i]==h){
m_Indices.push_back(u16(((j+0)*vsize+(i+0))+base));
m_Indices.push_back(u16(((j+0)*vsize+(i+1))+base));
m_Indices.push_back(u16(((j+1)*vsize+(i+1))+base));
m_Indices.push_back(u16(((j+1)*vsize+(i+0))+base));
}
}
}
splat.m_IndexCount=m_Indices.size()-splat.m_IndexStart;
}
// build indices for the shadow map pass
for (ssize_t j=0;j<PATCH_SIZE;j++) {
for (ssize_t i=0;i<PATCH_SIZE;i++) {
m_ShadowMapIndices.push_back(u16(((j+0)*vsize+(i+0))+base));
m_ShadowMapIndices.push_back(u16(((j+0)*vsize+(i+1))+base));
m_ShadowMapIndices.push_back(u16(((j+1)*vsize+(i+1))+base));
m_ShadowMapIndices.push_back(u16(((j+1)*vsize+(i+0))+base));
}
}
}
void CPatchRData::BuildVertices()
{
// create both vertices and lighting colors
CVector3D normal;
// number of vertices in each direction in each patch
ssize_t vsize=PATCH_SIZE+1;
if (!m_Vertices) {
m_Vertices=new SBaseVertex[vsize*vsize];
}
SBaseVertex* vertices=m_Vertices;
// get index of this patch
ssize_t px=m_Patch->m_X;
ssize_t pz=m_Patch->m_Z;
CTerrain* terrain=m_Patch->m_Parent;
const CLightEnv& lightEnv = g_Renderer.GetLightEnv();
// build vertices
for (ssize_t j=0;j<vsize;j++) {
for (ssize_t i=0;i<vsize;i++) {
ssize_t ix=px*PATCH_SIZE+i;
ssize_t iz=pz*PATCH_SIZE+j;
ssize_t v=(j*vsize)+i;
// calculate vertex data
terrain->CalcPosition(ix,iz,vertices[v].m_Position);
*(uint32_t*)&vertices[v].m_LOSColor = 0; // will be set to the proper value in Update()
CalculateUV(vertices[v].m_UVs, ix, iz);
// Calculate diffuse lighting for this vertex
// Ambient is added by the lighting pass (since ambient is the same
// for all vertices, it need not be stored in the vertex structure)
terrain->CalcNormal(ix,iz,normal);
RGBColor diffuse;
lightEnv.EvaluateDirect(normal, diffuse);
*(u32*)&vertices[v].m_DiffuseColor = ConvertRGBColorTo4ub(diffuse);
}
}
// upload to vertex buffer
if (!m_VBBase) {
m_VBBase=g_VBMan.Allocate(sizeof(SBaseVertex),vsize*vsize,true);
}
m_VBBase->m_Owner->UpdateChunkVertices(m_VBBase,m_Vertices);
}
void CPatchRData::Build()
{
BuildVertices();
BuildIndices();
BuildBlends();
}
void CPatchRData::Update()
{
if (m_UpdateFlags!=0) {
// TODO,RC 11/04/04 - need to only rebuild necessary bits of renderdata rather
// than everything; it's complicated slightly because the blends are dependent
// on both vertex and index data
BuildVertices();
BuildIndices();
BuildBlends();
m_UpdateFlags=0;
}
// Update vertex colors, which are affected by LOS
ssize_t px=m_Patch->m_X;
ssize_t pz=m_Patch->m_Z;
CTerrain* terrain=m_Patch->m_Parent;
ssize_t mapSize=terrain->GetVerticesPerSide();
ssize_t vsize=PATCH_SIZE+1;
SColor4ub baseColour = terrain->GetBaseColour();
if (g_Game)
{
CLOSManager* losMgr = g_Game->GetWorld()->GetLOSManager();
// this is very similar to BuildVertices(), but just for color
for (ssize_t j=0;j<vsize;j++) {
for (ssize_t i=0;i<vsize;i++) {
ssize_t ix=px*PATCH_SIZE+i;
ssize_t iz=pz*PATCH_SIZE+j;
ssize_t v=(j*vsize)+i;
const ssize_t DX[] = {1,1,0,0};
const ssize_t DZ[] = {0,1,1,0};
SColor4ub losMod = baseColour;
for(size_t k=0; k<4; k++)
{
ssize_t tx = ix - DX[k];
ssize_t tz = iz - DZ[k];
if(tx >= 0 && tz >= 0 && tx <= mapSize-2 && tz <= mapSize-2)
{
ELOSStatus s = losMgr->GetStatus(tx, tz, g_Game->GetLocalPlayer());
if(s==LOS_EXPLORED && losMod.R > 178)
losMod = SColor4ub(178, 178, 178, 255);
else if(s==LOS_UNEXPLORED && losMod.R > 0)
losMod = SColor4ub(0, 0, 0, 255);
}
}
m_Vertices[v].m_LOSColor = losMod;
}
}
}
else
{
for (ssize_t j = 0; j < vsize; ++j)
{
for (ssize_t i = 0; i < vsize; ++i)
{
ssize_t v = (j*vsize)+i;
m_Vertices[v].m_LOSColor = baseColour;
}
}
}
// upload base vertices into their vertex buffer
m_VBBase->m_Owner->UpdateChunkVertices(m_VBBase,m_Vertices);
// update blend colors by copying them from vertex colors
for(size_t i=0; i<m_BlendVertices.size(); i++)
{
m_BlendVertices[i].m_LOSColor = m_Vertices[m_BlendVertexIndices[i]].m_LOSColor;
}
// upload blend vertices into their vertex buffer too
if(m_BlendVertices.size())
{
m_VBBlends->m_Owner->UpdateChunkVertices(m_VBBlends,&m_BlendVertices[0]);
}
}
void CPatchRData::RenderBase(bool losColor)
{
debug_assert(m_UpdateFlags==0);
SBaseVertex *base=(SBaseVertex *)m_VBBase->m_Owner->Bind();
// setup data pointers
GLsizei stride=sizeof(SBaseVertex);
glVertexPointer(3,GL_FLOAT,stride,&base->m_Position[0]);
glColorPointer(4,GL_UNSIGNED_BYTE,stride,losColor ? &base->m_LOSColor : &base->m_DiffuseColor);
glTexCoordPointer(2,GL_FLOAT,stride,&base->m_UVs[0]);
// render each splat
for (size_t i=0;i<m_Splats.size();i++) {
SSplat& splat=m_Splats[i];
ogl_tex_bind(splat.m_Texture);
if (!g_Renderer.m_SkipSubmit) {
glDrawElements(GL_QUADS, (GLsizei)splat.m_IndexCount,
GL_UNSIGNED_SHORT, &m_Indices[splat.m_IndexStart]);
}
// bump stats
g_Renderer.m_Stats.m_DrawCalls++;
g_Renderer.m_Stats.m_TerrainTris+=splat.m_IndexCount/2;
}
}
void CPatchRData::RenderStreams(int streamflags, bool losColor)
{
debug_assert(m_UpdateFlags==0);
SBaseVertex* base=(SBaseVertex *)m_VBBase->m_Owner->Bind();
// setup data pointers
GLsizei stride=sizeof(SBaseVertex);
glVertexPointer(3, GL_FLOAT, stride, &base->m_Position);
if (streamflags & STREAM_UV0) {
glTexCoordPointer(2, GL_FLOAT, stride, &base->m_UVs);
} else if (streamflags & STREAM_POSTOUV0) {
glTexCoordPointer(3, GL_FLOAT, stride, &base->m_Position);
}
if (streamflags & STREAM_COLOR)
{
glColorPointer(4,GL_UNSIGNED_BYTE,stride,losColor ? &base->m_LOSColor : &base->m_DiffuseColor);
}
// render all base splats at once
if (!g_Renderer.m_SkipSubmit) {
glDrawElements(GL_QUADS,(GLsizei)m_Indices.size(),GL_UNSIGNED_SHORT,&m_Indices[0]);
}
// bump stats
g_Renderer.m_Stats.m_DrawCalls++;
g_Renderer.m_Stats.m_TerrainTris+=m_Indices.size()/2;
}
void CPatchRData::RenderBlends()
{
debug_assert(m_UpdateFlags==0);
if (m_BlendVertices.size()==0) return;
u8* base=m_VBBlends->m_Owner->Bind();
// setup data pointers
GLsizei stride=sizeof(SBlendVertex);
// ((GCC warns about offsetof: SBlendVertex contains a CVector3D which has
// a constructor, and so is not a POD type, and so offsetof is theoretically
// invalid - see http://gcc.gnu.org/ml/gcc/2003-11/msg00281.html - but it
// doesn't seem to be worth changing this code since it works anyway.))
glVertexPointer(3,GL_FLOAT,stride,base+offsetof(SBlendVertex,m_Position));
glColorPointer(4,GL_UNSIGNED_BYTE,stride,base+offsetof(SBlendVertex,m_LOSColor));
pglClientActiveTextureARB(GL_TEXTURE0);
glTexCoordPointer(2,GL_FLOAT,stride,base+offsetof(SBlendVertex,m_UVs[0]));
pglClientActiveTextureARB(GL_TEXTURE1);
glTexCoordPointer(2,GL_FLOAT,stride,base+offsetof(SBlendVertex,m_AlphaUVs[0]));
for (size_t i=0;i<m_BlendSplats.size();i++) {
SSplat& splat=m_BlendSplats[i];
ogl_tex_bind(splat.m_Texture);
if (!g_Renderer.m_SkipSubmit) {
glDrawElements(GL_QUADS, (GLsizei)splat.m_IndexCount,
GL_UNSIGNED_SHORT, &m_BlendIndices[splat.m_IndexStart]);
}
// bump stats
g_Renderer.m_Stats.m_DrawCalls++;
g_Renderer.m_Stats.m_BlendSplats++;
g_Renderer.m_Stats.m_TerrainTris+=splat.m_IndexCount/2;
}
}
void CPatchRData::RenderOutline()
{
size_t vsize=PATCH_SIZE+1;
glBegin(GL_LINES);
for (ssize_t i=0;i<PATCH_SIZE;i++) {
glVertex3fv(&m_Vertices[i].m_Position.X);
glVertex3fv(&m_Vertices[i+1].m_Position.X);
}
glEnd();
glBegin(GL_LINES);
for (ssize_t i=0;i<PATCH_SIZE;i++) {
glVertex3fv(&m_Vertices[PATCH_SIZE+(i*(PATCH_SIZE+1))].m_Position.X);
glVertex3fv(&m_Vertices[PATCH_SIZE+((i+1)*(PATCH_SIZE+1))].m_Position.X);
}
glEnd();
glBegin(GL_LINES);
for (ssize_t i=1;i<PATCH_SIZE;i++) {
glVertex3fv(&m_Vertices[(vsize*vsize)-i].m_Position.X);
glVertex3fv(&m_Vertices[(vsize*vsize)-(i+1)].m_Position.X);
}
glEnd();
glBegin(GL_LINES);
for (ssize_t i=1;i<PATCH_SIZE;i++) {
glVertex3fv(&m_Vertices[(vsize*(vsize-1))-(i*vsize)].m_Position.X);
glVertex3fv(&m_Vertices[(vsize*(vsize-1))-((i+1)*vsize)].m_Position.X);
}
glEnd();
}