1
0
forked from 0ad/0ad
0ad/source/lib/res/file/file.cpp
janwas 06412a7751 allocators: bugfix (wasn't setting freelist to 0)
archive: afile_read bugfix (wasn't returning byte count)
byte_order: add to_leXX, implement read_leXX in terms of that, add
write_leXX (and also big-endian versions)
compression: support 0 length buffers + minor fixes
file: no longer support passing fn_len (that didn't work anyway due to
DynHashTbl find(const char*) interface); add FILE_DONT_SET_FN
optimization that prevents cluttering name cache.
file_cache: add logic to verify load/free/load/free sequence; add
FILE_LONG_LIVED flag to specify exceptions (e.g. XMB files that don't
free their buffer immediately)
vfs_mount/vfs_tree: bugfix (was mixing up portable and VFS paths)
vfs_optimizer: small fixes; creating Zip files now works
vfs_tree: add PathName that stores pointer to path and name component
for efficiency + convenience
zip: bugfixes (wasn't endian safe; incorrect handling of cmethod; forgot
to initialize ZipArchive members)

config: add -buildarchive flag
Xeromyces.cpp, FileUnpacker.cpp: add FILE_LONG_LIVED
mapreader: bump time estimate for ReadXML

This was SVN commit r3446.
2006-01-31 03:47:52 +00:00

834 lines
24 KiB
C++
Executable File

// file layer on top of POSIX.
// provides streaming support and caching.
//
// Copyright (c) 2004 Jan Wassenberg
//
// This file is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// Contact info:
// Jan.Wassenberg@stud.uni-karlsruhe.de
// http://www.stud.uni-karlsruhe.de/~urkt/
#include "precompiled.h"
#include "lib.h"
#include "detect.h"
#include "adts.h"
#include "sysdep/sysdep.h"
#include "byte_order.h"
#include "lib/allocators.h"
#include "file_internal.h"
#include <vector>
#include <algorithm>
#include <string>
// rationale for aio, instead of only using mmap:
// - parallelism: instead of just waiting for the transfer to complete,
// other work can be done in the meantime.
// example: decompressing from a Zip archive is practically free,
// because we inflate one block while reading the next.
// - throughput: with aio, the drive always has something to do, as opposed
// to read requests triggered by the OS for mapped files, which come
// in smaller chunks. this leads to much higher transfer rates.
// - memory: when used with VFS, aio makes better use of a file cache.
// data is generally compressed in an archive. a cache should store the
// decompressed and decoded (e.g. TGA colour swapping) data; mmap would
// keep the original, compressed data in memory, which doesn't help.
// we bypass the OS file cache via aio, and store partial blocks here (*);
// higher level routines will cache the actual useful data.
// * requests for part of a block are usually followed by another.
// convenience "class" that simplifies successively appending a filename to
// its parent directory. this avoids needing to allocate memory and calling
// strlen/strcat. used by wdetect and dir_next_ent.
// we want to maintain C compatibility, so this isn't a C++ class.
// write the given directory path into our buffer and set end/chars_left
// accordingly. <dir> need and should not end with a directory separator.
//
// note: <dir> and the filename set via pp_append_file are separated by
// '/'. this is to allow use on portable paths; the function otherwise
// does not care if paths are relative/portable/absolute.
LibError pp_set_dir(PathPackage* pp, const char* dir)
{
// note: use / instead of DIR_SEP because pp->path is portable.
const int len = snprintf(pp->path, ARRAY_SIZE(pp->path), "%s/", dir);
// (need len below and must return an error code, not -1)
if(len < 0)
WARN_RETURN(ERR_PATH_LENGTH);
pp->end = pp->path+len;
pp->chars_left = ARRAY_SIZE(pp->path)-len;
// check if <dir> actually did end with '/' (this will cause problems
// when attempting to vfs_open the file).
if(len >= 2) // protect against underrun
debug_assert(pp->end[-2] != '/' && pp->end[-2] != DIR_SEP);
return ERR_OK;
}
// append the given filename to the directory established by the last
// pp_set_dir on this package. the whole path is accessible at pp->path.
LibError pp_append_file(PathPackage* pp, const char* fn)
{
CHECK_ERR(strcpy_s(pp->end, pp->chars_left, fn));
return ERR_OK;
}
//-----------------------------------------------------------------------------
// is s2 a subpath of s1, or vice versa? used by VFS and wdir_watch.
// works for portable and native paths.
bool file_is_subpath(const char* s1, const char* s2)
{
// make sure s1 is the shorter string
if(strlen(s1) > strlen(s2))
std::swap(s1, s2);
int c1 = 0, last_c1, c2;
for(;;)
{
last_c1 = c1;
c1 = *s1++, c2 = *s2++;
// end of s1 reached:
if(c1 == '\0')
{
// s1 matched s2 up until:
if((c2 == '\0') || // its end (i.e. they're equal length)
(c2 == '/' || c2 == DIR_SEP) || // start of next component
(last_c1 == '/' || last_c1 == DIR_SEP)) // ", but both have a trailing slash
// => is subpath
return true;
}
// mismatch => is not subpath
if(c1 != c2)
return false;
}
}
enum Conversion
{
TO_NATIVE,
TO_PORTABLE
};
static LibError convert_path(char* dst, const char* src, Conversion conv = TO_NATIVE)
{
// DIR_SEP is assumed to be a single character!
const char* s = src;
char* d = dst;
char from = DIR_SEP, to = '/';
if(conv == TO_NATIVE)
from = '/', to = DIR_SEP;
size_t len = 0;
for(;;)
{
len++;
if(len >= PATH_MAX)
WARN_RETURN(ERR_PATH_LENGTH);
char c = *s++;
if(c == from)
c = to;
*d++ = c;
// end of string - done
if(c == '\0')
return ERR_OK;
}
}
// set by file_set_root_dir
static char n_root_dir[PATH_MAX];
static size_t n_root_dir_len;
// return the native equivalent of the given relative portable path
// (i.e. convert all '/' to the platform's directory separator)
// makes sure length < PATH_MAX.
LibError file_make_native_path(const char* path, char* n_path)
{
return convert_path(n_path, path, TO_NATIVE);
}
// return the portable equivalent of the given relative native path
// (i.e. convert the platform's directory separators to '/')
// makes sure length < PATH_MAX.
LibError file_make_portable_path(const char* n_path, char* path)
{
return convert_path(path, n_path, TO_PORTABLE);
}
// return the native equivalent of the given portable path
// (i.e. convert all '/' to the platform's directory separator).
// also prepends current directory => n_full_path is absolute.
// makes sure length < PATH_MAX.
LibError file_make_full_native_path(const char* path, char* n_full_path)
{
debug_assert(path != n_full_path); // doesn't work in-place
strcpy_s(n_full_path, PATH_MAX, n_root_dir);
return convert_path(n_full_path+n_root_dir_len, path, TO_NATIVE);
}
// return the portable equivalent of the given relative native path
// (i.e. convert the platform's directory separators to '/')
// n_full_path is absolute; if it doesn't match the current dir, fail.
// (note: portable paths are always relative to the file root dir).
// makes sure length < PATH_MAX.
LibError file_make_full_portable_path(const char* n_full_path, char* path)
{
debug_assert(path != n_full_path); // doesn't work in-place
if(strncmp(n_full_path, n_root_dir, n_root_dir_len) != 0)
return ERR_PATH_NOT_FOUND;
return convert_path(path, n_full_path+n_root_dir_len, TO_PORTABLE);
}
// establish the root directory from <rel_path>, which is treated as
// relative to the executable's directory (determined via argv[0]).
// all relative file paths passed to this module will be based from
// this root dir.
//
// example: executable in "$install_dir/system"; desired root dir is
// "$install_dir/data" => rel_path = "../data".
//
// argv[0] is necessary because the current directory is unknown at startup
// (e.g. it isn't set when invoked via batch file), and this is the
// easiest portable way to find our install directory.
//
// can only be called once, by design (see below). rel_path is trusted.
LibError file_set_root_dir(const char* argv0, const char* rel_path)
{
const char* msg = 0;
// security check: only allow attempting to chdir once, so that malicious
// code cannot circumvent the VFS checks that disallow access to anything
// above the current directory (set here).
// this routine is called early at startup, so any subsequent attempts
// are likely bogus.
static bool already_attempted;
if(already_attempted)
{
msg = "called more than once";
goto fail;
}
already_attempted = true;
{
// get full path to executable
char n_path[PATH_MAX];
// .. first try safe, but system-dependent version
if(sys_get_executable_name(n_path, PATH_MAX) < 0)
{
// .. failed; use argv[0]
if(!realpath(argv0, n_path))
{
msg = "realpath(argv[0]) failed";
goto fail;
}
}
// make sure it's valid
if(access(n_path, X_OK) < 0)
{
msg = "ERR_FILE_ACCESS";
goto fail;
}
// strip executable name, append rel_path, convert to native
char* fn = strrchr(n_path, DIR_SEP);
if(!fn)
{
msg = "realpath returned an invalid path?";
goto fail;
}
RETURN_ERR(file_make_native_path(rel_path, fn+1));
// get actual root dir - previous n_path may include ".."
// (slight optimization, speeds up path lookup)
if(!realpath(n_path, n_root_dir))
goto fail;
// .. append DIR_SEP to simplify code that uses n_root_dir
// (note: already 0-terminated, since it's static)
n_root_dir_len = strlen(n_root_dir)+1; // +1 for trailing DIR_SEP
n_root_dir[n_root_dir_len-1] = DIR_SEP;
return ERR_OK;
}
fail:
debug_warn("failed");
if(msg)
{
debug_printf("%s: %s\n", __func__, msg);
return ERR_FAIL;
}
return LibError_from_errno();
}
//-----------------------------------------------------------------------------
// layer on top of POSIX opendir/readdir/closedir that handles
// portable -> native path conversion, ignores non-file/directory entries,
// and additionally returns the file status (size and mtime).
// rationale: see DirIterator definition in header.
struct DirIterator_
{
DIR* os_dir;
// to support stat(), we need to either chdir or store the complete path.
// the former is unacceptable because it isn't thread-safe. therefore,
// we latch dir_open's path and append entry name every dir_next_ent call.
// this is also the storage to which DirEnt.name points!
// PathPackage avoids repeated memory allocs and strlen() overhead.
PathPackage pp;
};
cassert(sizeof(DirIterator_) <= sizeof(DirIterator));
// prepare to iterate (once) over entries in the given directory.
// returns a negative error code or 0 on success, in which case <d> is
// ready for subsequent dir_next_ent calls and must be freed via dir_close.
LibError dir_open(const char* P_path, DirIterator* d_)
{
DirIterator_* d = (DirIterator_*)d_;
char n_path[PATH_MAX];
// HACK: allow calling with a full (absolute) native path.
// (required by wdetect).
#if OS_WIN
if(P_path[1] == ':' && P_path[2] == '\\')
strcpy_s(n_path, ARRAY_SIZE(n_path), P_path);
else
#endif
{
// note: copying to n_path and then pp.path is inefficient but
// more clear/robust. this is only called a few hundred times anyway.
RETURN_ERR(file_make_full_native_path(P_path, n_path));
}
d->os_dir = opendir(n_path);
if(!d->os_dir)
CHECK_ERR(LibError_from_errno());
RETURN_ERR(pp_set_dir(&d->pp, n_path));
return ERR_OK;
}
// return ERR_DIR_END if all entries have already been returned once,
// another negative error code, or 0 on success, in which case <ent>
// describes the next (order is unspecified) directory entry.
LibError dir_next_ent(DirIterator* d_, DirEnt* ent)
{
DirIterator_* d = (DirIterator_*)d_;
get_another_entry:
errno = 0;
struct dirent* os_ent = readdir(d->os_dir);
if(!os_ent)
{
if(errno)
debug_warn("readdir failed");
return ERR_DIR_END;
}
// copy os_ent.name[]; we need it for stat() #if !OS_WIN and
// return it as ent.name (since os_ent.name[] is volatile).
pp_append_file(&d->pp, os_ent->d_name);
const char* name = d->pp.end;
// get file information (mode, size, mtime)
struct stat s;
#if OS_WIN
// .. wposix readdir has enough information to return dirent
// status directly (much faster than calling stat).
CHECK_ERR(readdir_stat_np(d->os_dir, &s));
#else
// .. call regular stat().
// we need the full pathname for this. don't use vfs_path_append because
// it would unnecessarily call strlen.
CHECK_ERR(stat(d->pp.path, &s));
#endif
// skip "undesirable" entries that POSIX readdir returns:
if(S_ISDIR(s.st_mode))
{
// .. dummy directory entries ("." and "..")
if(name[0] == '.' && (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')))
goto get_another_entry;
s.st_size = -1; // our way of indicating it's a directory
}
// .. neither dir nor file
else if(!S_ISREG(s.st_mode))
goto get_another_entry;
ent->size = s.st_size;
ent->mtime = s.st_mtime;
ent->name = name;
return ERR_OK;
}
// indicate the directory iterator is no longer needed; all resources it
// held are freed.
LibError dir_close(DirIterator* d_)
{
DirIterator_* d = (DirIterator_*)d_;
WARN_ERR(closedir(d->os_dir));
return ERR_OK;
}
static bool dirent_less(const DirEnt* d1, const DirEnt* d2)
{
return strcmp(d1->name, d2->name) < 0;
}
// call <cb> for each file and subdirectory in <dir> (alphabetical order),
// passing the entry name (not full path!), stat info, and <user>.
//
// first builds a list of entries (sorted) and remembers if an error occurred.
// if <cb> returns non-zero, abort immediately and return that; otherwise,
// return first error encountered while listing files, or 0 on success.
//
// rationale:
// this makes file_enum and zip_enum slightly incompatible, since zip_enum
// returns the full path. that's necessary because VFS zip_cb
// has no other way of determining what VFS dir a Zip file is in,
// since zip_enum enumerates all files in the archive (not only those
// in a given dir). no big deal though, since add_ent has to
// special-case Zip files anyway.
// the advantage here is simplicity, and sparing callbacks the trouble
// of converting from/to native path (we just give 'em the dirent name).
LibError file_enum(const char* P_path, const FileCB cb, const uintptr_t user)
{
// pointer to DirEnt: faster sorting, but more allocs.
typedef std::vector<const DirEnt*> DirEnts;
typedef DirEnts::const_iterator DirEntCIt;
typedef DirEnts::reverse_iterator DirEntRIt;
// all entries are enumerated (adding to this container),
// std::sort-ed, then all passed to cb.
DirEnts dirents;
dirents.reserve(125); // preallocate for efficiency
LibError stat_err = ERR_OK; // first error encountered by stat()
LibError cb_err = ERR_OK; // first error returned by cb
DirIterator d;
CHECK_ERR(dir_open(P_path, &d));
DirEnt ent;
for(;;) // instead of while() to avoid warnings
{
LibError ret = dir_next_ent(&d, &ent);
if(ret == ERR_DIR_END)
break;
if(!stat_err)
stat_err = ret;
const size_t size = sizeof(DirEnt)+strlen(ent.name)+1;
DirEnt* p_ent = (DirEnt*)malloc(size);
if(!p_ent)
{
stat_err = ERR_NO_MEM;
goto fail;
}
p_ent->size = ent.size;
p_ent->mtime = ent.mtime;
p_ent->name = (const char*)p_ent + sizeof(DirEnt);
strcpy((char*)p_ent->name, ent.name); // safe
dirents.push_back(p_ent);
}
std::sort(dirents.begin(), dirents.end(), dirent_less);
// call back for each entry (now sorted)
{
struct stat s;
memset(&s, 0, sizeof(s));
const uintptr_t memento = 0; // there is nothing we
for(DirEntCIt it = dirents.begin(); it != dirents.end(); ++it)
{
const DirEnt* ent = *it;
s.st_mode = (ent->size == -1)? S_IFDIR : S_IFREG;
s.st_size = ent->size;
s.st_mtime = ent->mtime;
LibError ret = cb(ent->name, &s, memento, user);
if(ret != INFO_CB_CONTINUE)
{
cb_err = ret; // first error (since we now abort)
break;
}
}
}
fail:
WARN_ERR(dir_close(&d));
// free all memory (can't do in loop above because it may be aborted).
for(DirEntRIt rit = dirents.rbegin(); rit != dirents.rend(); ++rit)
free((void*)(*rit));
if(cb_err != ERR_OK)
return cb_err;
return stat_err;
}
// get file information. output param is zeroed on error.
LibError file_stat(const char* path, struct stat* s)
{
memset(s, 0, sizeof(struct stat));
char n_path[PATH_MAX+1];
CHECK_ERR(file_make_full_native_path(path, n_path));
errno = 0;
return LibError_from_posix(stat(n_path, s));
}
///////////////////////////////////////////////////////////////////////////////
//
// file open/close
// stores information about file (e.g. size) in File struct
//
///////////////////////////////////////////////////////////////////////////////
// interface rationale:
// - this module depends on the handle manager for IO management,
// but should be useable without the VFS (even if they are designed
// to work together).
// - allocating a Handle for the file info would solve several problems
// (see below), but we don't want to allocate 2..3 (VFS, file, Zip file)
// for every file opened - that'd add up quickly.
// the Files are always freed at exit though, since they're part of
// VFile handles in the VFS.
// - we want the VFS open logic to be triggered on file invalidate
// (if the dev. file is deleted, we should use what's in the archives).
// we don't want to make this module depend on VFS, so we don't
// have access to the file location DB; VFS needs to allocate the handle.
// - no problem exposing our internals via File struct -
// we're only used by the VFS and Zip modules. don't bother making
// an opaque struct - that'd have to be kept in sync with the real thing.
// - when Zip opens its archives via file_open, a handle isn't needed -
// the Zip module hides its File struct (required to close the file),
// and the Handle approach doesn't guard against some idiot calling
// close(our_fd_value) directly, either.
LibError file_validate(const File* f)
{
if(!f)
return ERR_INVALID_PARAM;
else if(f->fd < 0)
return ERR_1;
// mapped but refcount is invalid
else if((f->mapping != 0) ^ (f->map_refs != 0))
return ERR_2;
// note: don't check atom_fn - that complains after file_open
// if flags & FILE_DONT_SET_FN and has no benefit, really.
return ERR_OK;
}
// rationale: we want a constant-time IsAtomFn(string pointer) lookup:
// this avoids any overhead of calling file_make_unique_fn_copy on
// already-atomized strings. that requires allocating from one contiguous
// arena, which is also more memory-efficient than the heap (no headers).
static Pool atom_pool;
// allocate a copy of P_fn in our string pool. strings are equal iff
// their addresses are equal, thus allowing fast comparison.
const char* file_make_unique_fn_copy(const char* P_fn)
{
// early out: if already an atom, return immediately.
if(pool_contains(&atom_pool, (void*)P_fn))
return P_fn;
const size_t fn_len = strlen(P_fn);
const char* unique_fn;
// check if already allocated; return existing copy if so.
//
// rationale: the entire storage could be done via container,
// rather than simply using it as a lookup mapping.
// however, DynHashTbl together with Pool (see above) is more efficient.
typedef DynHashTbl<const char*, const char*> AtomMap;
static AtomMap atom_map;
unique_fn = atom_map.find(P_fn);
if(unique_fn)
return unique_fn;
unique_fn = (const char*)pool_alloc(&atom_pool, fn_len+1);
if(!unique_fn)
return 0;
memcpy2((void*)unique_fn, P_fn, fn_len);
((char*)unique_fn)[fn_len] = '\0';
atom_map.insert(unique_fn, unique_fn);
stats_unique_name(fn_len);
return unique_fn;
}
static inline void atom_init()
{
pool_create(&atom_pool, 8*MiB, POOL_VARIABLE_ALLOCS);
}
static inline void atom_shutdown()
{
(void)pool_destroy(&atom_pool);
}
LibError file_open(const char* P_fn, const uint flags, File* f)
{
// zero output param in case we fail below.
memset(f, 0, sizeof(*f));
if(flags > FILE_FLAG_MAX)
return ERR_INVALID_PARAM;
char N_fn[PATH_MAX];
RETURN_ERR(file_make_full_native_path(P_fn, N_fn));
// don't stat if opening for writing - the file may not exist yet
off_t size = 0;
int oflag = O_RDONLY;
if(flags & FILE_WRITE)
oflag = O_WRONLY|O_CREAT|O_TRUNC;
// read access requested
else
{
// get file size
struct stat s;
if(stat(N_fn, &s) < 0)
return ERR_FILE_NOT_FOUND;
size = s.st_size;
// note: despite increased overhead, the AIO read method is still
// significantly faster, even with small files.
// we therefore don't automatically disable AIO.
// notes:
// - up to 32KB can be read by one SCSI request.
// - flags are stored below and will influence file_io.
//if(size <= 32*KiB)
// flags |= FILE_NO_AIO;
// make sure <N_fn> is a regular file
if(!S_ISREG(s.st_mode))
return ERR_NOT_FILE;
}
#if OS_WIN
if(flags & FILE_TEXT)
oflag |= O_TEXT_NP;
else
oflag |= O_BINARY_NP;
// if AIO is disabled at user's behest, so inform wposix.
if(flags & FILE_NO_AIO)
oflag |= O_NO_AIO_NP;
#endif
int fd = open(N_fn, oflag, S_IRWXO|S_IRWXU|S_IRWXG);
if(fd < 0)
return ERR_FILE_ACCESS;
f->fc.flags = flags;
f->fc.size = size;
// see FILE_DONT_SET_FN decl.
if(!(flags & FILE_DONT_SET_FN))
f->fc.atom_fn = file_make_unique_fn_copy(P_fn);
f->mapping = 0;
f->map_refs = 0;
f->fd = fd;
CHECK_FILE(f);
return ERR_OK;
}
LibError file_close(File* f)
{
CHECK_FILE(f);
// make sure the mapping is actually freed,
// regardless of how many references remain.
if(f->map_refs > 1)
f->map_refs = 1;
if(f->mapping) // only free if necessary (unmap complains if not mapped)
file_unmap(f);
// return final file size (required by VFS after writing files).
// this is much easier than updating when writing, because we'd have
// to add accounting code to both (sync and async) paths.
f->fc.size = lseek(f->fd, 0, SEEK_END);
// (check fd to avoid BoundsChecker warning about invalid close() param)
if(f->fd != -1)
{
close(f->fd);
f->fd = -1;
}
// wipe out any cached blocks. this is necessary to cover the (rare) case
// of file cache contents predating the file write.
if(f->fc.flags & FILE_WRITE)
file_cache_invalidate(f->fc.atom_fn);
return ERR_OK;
}
///////////////////////////////////////////////////////////////////////////////
//
// memory mapping
//
///////////////////////////////////////////////////////////////////////////////
// no significance aside from preventing uint overflow.
static const uint MAX_MAP_REFS = 255;
// map the entire file <f> into memory. if already currently mapped,
// return the previous mapping (reference-counted).
// output parameters are zeroed on failure.
//
// the mapping will be removed (if still open) when its file is closed.
// however, map/unmap calls should still be paired so that the mapping
// may be removed when no longer needed.
//
// rationale: reference counting is required for zip_map: several
// Zip "mappings" each reference one ZArchive's actual file mapping.
// implement it here so that we also get refcounting for normal files.
LibError file_map(File* f, void*& p, size_t& size)
{
p = 0;
size = 0;
CHECK_FILE(f);
const int prot = (f->fc.flags & FILE_WRITE)? PROT_WRITE : PROT_READ;
// already mapped - increase refcount and return previous mapping.
if(f->mapping)
{
// prevent overflow; if we have this many refs, should find out why.
if(f->map_refs >= MAX_MAP_REFS)
WARN_RETURN(ERR_LIMIT);
f->map_refs++;
goto have_mapping;
}
// don't allow mapping zero-length files (doesn't make sense,
// and BoundsChecker warns about wposix mmap failing).
// then again, don't complain, because this might happen when mounting
// a dir containing empty files; each is opened as a Zip file.
if(f->fc.size == 0)
return ERR_FAIL;
errno = 0;
f->mapping = mmap(0, f->fc.size, prot, MAP_PRIVATE, f->fd, (off_t)0);
if(f->mapping == MAP_FAILED)
return LibError_from_errno();
f->map_refs = 1;
have_mapping:
p = f->mapping;
size = f->fc.size;
return ERR_OK;
}
// decrement the reference count for the mapping belonging to file <f>.
// fail if there are no references; remove the mapping if the count reaches 0.
//
// the mapping will be removed (if still open) when its file is closed.
// however, map/unmap calls should still be paired so that the mapping
// may be removed when no longer needed.
LibError file_unmap(File* f)
{
CHECK_FILE(f);
// file is not currently mapped
if(f->map_refs == 0)
{
debug_warn("not currently mapped");
return ERR_FAIL;
}
// still more than one reference remaining - done.
if(--f->map_refs > 0)
return ERR_OK;
// no more references: remove the mapping
void* p = f->mapping;
f->mapping = 0;
// don't clear f->fc.size - the file is still open.
errno = 0;
return LibError_from_posix(munmap(p, f->fc.size));
}
LibError file_init()
{
atom_init();
file_cache_init();
file_io_init();
return ERR_OK;
}
LibError file_shutdown()
{
stats_dump();
atom_shutdown();
file_io_shutdown();
return ERR_OK;
}