/* Copyright (C) 2024 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "OverlayRenderer.h" #include "graphics/Camera.h" #include "graphics/LOSTexture.h" #include "graphics/Overlay.h" #include "graphics/ShaderManager.h" #include "graphics/Terrain.h" #include "graphics/TextureManager.h" #include "lib/hash.h" #include "maths/MathUtil.h" #include "maths/Quaternion.h" #include "ps/CStrInternStatic.h" #include "ps/Game.h" #include "ps/Profile.h" #include "renderer/backend/PipelineState.h" #include "renderer/DebugRenderer.h" #include "renderer/Renderer.h" #include "renderer/SceneRenderer.h" #include "renderer/TexturedLineRData.h" #include "renderer/VertexArray.h" #include "renderer/VertexBuffer.h" #include "renderer/VertexBufferManager.h" #include "simulation2/components/ICmpWaterManager.h" #include "simulation2/Simulation2.h" #include "simulation2/system/SimContext.h" #include namespace { struct Shader { CShaderTechniquePtr technique, techniqueWireframe; const CShaderTechniquePtr& GetTechnique() const { return g_Renderer.GetSceneRenderer().GetOverlayRenderMode() == WIREFRAME ? techniqueWireframe : technique; } }; void AdjustOverlayGraphicsPipelineState( Renderer::Backend::SGraphicsPipelineStateDesc& pipelineStateDesc, const bool depthTestEnabled) { pipelineStateDesc.depthStencilState.depthTestEnabled = depthTestEnabled; pipelineStateDesc.depthStencilState.depthWriteEnabled = false; pipelineStateDesc.blendState.enabled = true; pipelineStateDesc.blendState.srcColorBlendFactor = pipelineStateDesc.blendState.srcAlphaBlendFactor = Renderer::Backend::BlendFactor::SRC_ALPHA; pipelineStateDesc.blendState.dstColorBlendFactor = pipelineStateDesc.blendState.dstAlphaBlendFactor = Renderer::Backend::BlendFactor::ONE_MINUS_SRC_ALPHA; pipelineStateDesc.blendState.colorBlendOp = pipelineStateDesc.blendState.alphaBlendOp = Renderer::Backend::BlendOp::ADD; } Shader CreateShader( const CStrIntern name, const CShaderDefines& defines, const bool depthTestEnabled) { Shader shader; shader.technique = g_Renderer.GetShaderManager().LoadEffect( name, defines, [depthTestEnabled](Renderer::Backend::SGraphicsPipelineStateDesc& pipelineStateDesc) { AdjustOverlayGraphicsPipelineState(pipelineStateDesc, depthTestEnabled); }); shader.techniqueWireframe = g_Renderer.GetShaderManager().LoadEffect( name, defines, [depthTestEnabled](Renderer::Backend::SGraphicsPipelineStateDesc& pipelineStateDesc) { AdjustOverlayGraphicsPipelineState(pipelineStateDesc, depthTestEnabled); pipelineStateDesc.rasterizationState.polygonMode = Renderer::Backend::PolygonMode::LINE; }); return shader; } /** * Key used to group quads into batches for more efficient rendering. Currently groups by the combination * of the main texture and the texture mask, to minimize texture swapping during rendering. */ struct QuadBatchKey { QuadBatchKey (const CTexturePtr& texture, const CTexturePtr& textureMask) : m_Texture(texture), m_TextureMask(textureMask) { } bool operator==(const QuadBatchKey& other) const { return (m_Texture == other.m_Texture && m_TextureMask == other.m_TextureMask); } CTexturePtr m_Texture; CTexturePtr m_TextureMask; }; struct QuadBatchHash { std::size_t operator()(const QuadBatchKey& d) const { size_t seed = 0; hash_combine(seed, d.m_Texture); hash_combine(seed, d.m_TextureMask); return seed; } }; /** * Holds information about a single quad rendering batch. */ class QuadBatchData : public CRenderData { public: QuadBatchData() : m_IndicesBase(0), m_NumRenderQuads(0) { } /// Holds the quad overlay structures requested to be rendered in this batch. Must be cleared /// after each frame. std::vector m_Quads; /// Start index of this batch into the dedicated quad indices VertexArray (see OverlayInternals). size_t m_IndicesBase; /// Amount of quads to actually render in this batch. Potentially (although unlikely to be) /// different from m_Quads.size() due to restrictions on the total amount of quads that can be /// rendered. Must be reset after each frame. size_t m_NumRenderQuads; }; } // anonymous namespace struct OverlayRendererInternals { using QuadBatchMap = std::unordered_map; OverlayRendererInternals(); ~OverlayRendererInternals() = default; Renderer::Backend::IDevice* device = nullptr; std::vector lines; std::vector texlines; std::vector sprites; std::vector quads; std::vector spheres; QuadBatchMap quadBatchMap; // Dedicated vertex/index buffers for rendering all quads (to within the limits set by // MAX_QUAD_OVERLAYS). VertexArray quadVertices; VertexArray::Attribute quadAttributePos; VertexArray::Attribute quadAttributeColor; VertexArray::Attribute quadAttributeUV; VertexIndexArray quadIndices; // Maximum amount of quad overlays we support for rendering. This limit is set to be able to // render all quads from a single dedicated VB without having to reallocate it, which is much // faster in the typical case of rendering only a handful of quads. When modifying this value, // you must take care for the new amount of quads to fit in a single backend buffer (which is // not likely to be a problem). static const size_t MAX_QUAD_OVERLAYS = 1024; // Sets of commonly-(re)used shader defines. CShaderDefines defsOverlayLineNormal; CShaderDefines defsOverlayLineAlwaysVisible; CShaderDefines defsQuadOverlay; Shader shaderTexLineNormal; Shader shaderTexLineAlwaysVisible; Shader shaderQuadOverlay; Shader shaderForegroundOverlay; Shader shaderOverlaySolid; Renderer::Backend::IVertexInputLayout* quadVertexInputLayout = nullptr; Renderer::Backend::IVertexInputLayout* foregroundVertexInputLayout = nullptr; Renderer::Backend::IVertexInputLayout* sphereVertexInputLayout = nullptr; Renderer::Backend::IVertexInputLayout* texturedLineVertexInputLayout = nullptr; // Geometry for a unit sphere std::vector sphereVertexes; std::vector sphereIndexes; void GenerateSphere(); // Performs one-time setup. Called from CRenderer::Open, after graphics capabilities have // been detected. Note that no backend buffer must be created before this is called, since // the shader path and graphics capabilities are not guaranteed to be stable before this // point. void Initialize(); }; const float OverlayRenderer::OVERLAY_VOFFSET = 0.2f; OverlayRendererInternals::OverlayRendererInternals() : quadVertices(Renderer::Backend::IBuffer::Type::VERTEX, Renderer::Backend::IBuffer::Usage::DYNAMIC | Renderer::Backend::IBuffer::Usage::TRANSFER_DST), quadIndices(Renderer::Backend::IBuffer::Usage::TRANSFER_DST) { quadAttributePos.format = Renderer::Backend::Format::R32G32B32_SFLOAT; quadVertices.AddAttribute(&quadAttributePos); quadAttributeColor.format = Renderer::Backend::Format::R8G8B8A8_UNORM; quadVertices.AddAttribute(&quadAttributeColor); quadAttributeUV.format = Renderer::Backend::Format::R32G32_SFLOAT; quadVertices.AddAttribute(&quadAttributeUV); // Note that we're reusing the textured overlay line shader for the quad overlay rendering. This // is because their code is almost identical; the only difference is that for the quad overlays // we want to use a vertex color stream as opposed to an objectColor uniform. To this end, the // shader has been set up to switch between the two behaviours based on the USE_OBJECTCOLOR define. defsOverlayLineNormal.Add(str_USE_OBJECTCOLOR, str_1); defsOverlayLineAlwaysVisible.Add(str_USE_OBJECTCOLOR, str_1); defsOverlayLineAlwaysVisible.Add(str_IGNORE_LOS, str_1); } void OverlayRendererInternals::Initialize() { // Perform any initialization after graphics capabilities have been detected. Notably, // only at this point can we safely allocate backend buffer (in contrast to e.g. in the constructor), // because their creation depends on the shader path, which is not reliably set before this point. quadVertices.SetNumberOfVertices(MAX_QUAD_OVERLAYS * 4); quadVertices.Layout(); // allocate backing store quadIndices.SetNumberOfVertices(MAX_QUAD_OVERLAYS * 6); quadIndices.Layout(); // allocate backing store // Since the quads in the vertex array are independent and always consist of exactly 4 vertices per quad, the // indices are always the same; we can therefore fill in all the indices once and pretty much forget about // them. We then also no longer need its backing store, since we never change any indices afterwards. VertexArrayIterator index = quadIndices.GetIterator(); for (u16 i = 0; i < static_cast(MAX_QUAD_OVERLAYS); ++i) { *index++ = i * 4 + 0; *index++ = i * 4 + 1; *index++ = i * 4 + 2; *index++ = i * 4 + 2; *index++ = i * 4 + 3; *index++ = i * 4 + 0; } quadIndices.Upload(); quadIndices.FreeBackingStore(); shaderTexLineNormal = CreateShader(str_overlay_line, defsOverlayLineNormal, true); shaderTexLineAlwaysVisible = CreateShader(str_overlay_line, defsOverlayLineAlwaysVisible, true); shaderQuadOverlay = CreateShader(str_overlay_line, defsQuadOverlay, true); shaderForegroundOverlay = CreateShader(str_foreground_overlay, {}, false); shaderOverlaySolid = CreateShader(str_overlay_solid, {}, true); const uint32_t quadStride = quadVertices.GetStride(); const std::array quadAttributes{{ {Renderer::Backend::VertexAttributeStream::POSITION, quadAttributePos.format, quadAttributePos.offset, quadStride, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0}, {Renderer::Backend::VertexAttributeStream::COLOR, quadAttributeColor.format, quadAttributeColor.offset, quadStride, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0}, {Renderer::Backend::VertexAttributeStream::UV0, quadAttributeUV.format, quadAttributeUV.offset, quadStride, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0} }}; quadVertexInputLayout = g_Renderer.GetVertexInputLayout(quadAttributes); const std::array foregroundAttributes{{ {Renderer::Backend::VertexAttributeStream::POSITION, Renderer::Backend::Format::R32G32B32_SFLOAT, 0, sizeof(float) * 3, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0}, {Renderer::Backend::VertexAttributeStream::UV0, Renderer::Backend::Format::R32G32_SFLOAT, 0, sizeof(float) * 2, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 1} }}; foregroundVertexInputLayout = g_Renderer.GetVertexInputLayout(foregroundAttributes); const std::array shpereAttributes{{ {Renderer::Backend::VertexAttributeStream::POSITION, Renderer::Backend::Format::R32G32B32_SFLOAT, 0, sizeof(float) * 3, Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0} }}; sphereVertexInputLayout = g_Renderer.GetVertexInputLayout(shpereAttributes); texturedLineVertexInputLayout = CTexturedLineRData::GetVertexInputLayout(); } OverlayRenderer::OverlayRenderer() { m = new OverlayRendererInternals(); } OverlayRenderer::~OverlayRenderer() { delete m; } void OverlayRenderer::Initialize() { m->Initialize(); } void OverlayRenderer::Submit(SOverlayLine* line) { m->lines.push_back(line); } void OverlayRenderer::Submit(SOverlayTexturedLine* line) { // Simplify the rest of the code by guaranteeing non-empty lines if (line->m_Coords.empty()) return; m->texlines.push_back(line); } void OverlayRenderer::Submit(SOverlaySprite* overlay) { m->sprites.push_back(overlay); } void OverlayRenderer::Submit(SOverlayQuad* overlay) { m->quads.push_back(overlay); } void OverlayRenderer::Submit(SOverlaySphere* overlay) { m->spheres.push_back(overlay); } void OverlayRenderer::EndFrame() { m->lines.clear(); m->texlines.clear(); m->sprites.clear(); m->quads.clear(); m->spheres.clear(); // this should leave the capacity unchanged, which is okay since it // won't be very large or very variable // Empty the batch rendering data structures, but keep their key mappings around for the next frames for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it) { QuadBatchData& quadBatchData = (it->second); quadBatchData.m_Quads.clear(); quadBatchData.m_NumRenderQuads = 0; quadBatchData.m_IndicesBase = 0; } } void OverlayRenderer::PrepareForRendering() { PROFILE3("prepare overlays"); // This is where we should do something like sort the overlays by // color/sprite/etc for more efficient rendering for (size_t i = 0; i < m->texlines.size(); ++i) { SOverlayTexturedLine* line = m->texlines[i]; if (!line->m_RenderData) { line->m_RenderData = std::make_shared(); line->m_RenderData->Update(*line); // We assume the overlay line will get replaced by the caller // if terrain changes, so we don't need to detect that here and // call Update again. Also we assume the caller won't change // any of the parameters after first submitting the line. } } // Group quad overlays by their texture/mask combination for efficient rendering // TODO: consider doing this directly in Submit() for (size_t i = 0; i < m->quads.size(); ++i) { SOverlayQuad* const quad = m->quads[i]; QuadBatchKey textures(quad->m_Texture, quad->m_TextureMask); QuadBatchData& batchRenderData = m->quadBatchMap[textures]; // will create entry if it doesn't already exist // add overlay to list of quads batchRenderData.m_Quads.push_back(quad); } const CVector3D vOffset(0, OverlayRenderer::OVERLAY_VOFFSET, 0); // Write quad overlay vertices/indices to VA backing store VertexArrayIterator vertexPos = m->quadAttributePos.GetIterator(); VertexArrayIterator vertexColor = m->quadAttributeColor.GetIterator(); VertexArrayIterator vertexUV = m->quadAttributeUV.GetIterator(); size_t indicesIdx = 0; size_t totalNumQuads = 0; for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it) { QuadBatchData& batchRenderData = (it->second); batchRenderData.m_NumRenderQuads = 0; if (batchRenderData.m_Quads.empty()) continue; // Remember the current index into the (entire) indices array as our base offset for this batch batchRenderData.m_IndicesBase = indicesIdx; // points to the index where each iteration's vertices will be appended for (size_t i = 0; i < batchRenderData.m_Quads.size() && totalNumQuads < OverlayRendererInternals::MAX_QUAD_OVERLAYS; i++) { const SOverlayQuad* quad = batchRenderData.m_Quads[i]; const SColor4ub quadColor = quad->m_Color.AsSColor4ub(); *vertexPos++ = quad->m_Corners[0] + vOffset; *vertexPos++ = quad->m_Corners[1] + vOffset; *vertexPos++ = quad->m_Corners[2] + vOffset; *vertexPos++ = quad->m_Corners[3] + vOffset; (*vertexUV)[0] = 0; (*vertexUV)[1] = 0; ++vertexUV; (*vertexUV)[0] = 0; (*vertexUV)[1] = 1; ++vertexUV; (*vertexUV)[0] = 1; (*vertexUV)[1] = 1; ++vertexUV; (*vertexUV)[0] = 1; (*vertexUV)[1] = 0; ++vertexUV; *vertexColor++ = quadColor; *vertexColor++ = quadColor; *vertexColor++ = quadColor; *vertexColor++ = quadColor; indicesIdx += 6; totalNumQuads++; batchRenderData.m_NumRenderQuads++; } } m->quadVertices.Upload(); // don't free the backing store! we'll overwrite it on the next frame to save a reallocation. m->quadVertices.PrepareForRendering(); } void OverlayRenderer::Upload( Renderer::Backend::IDeviceCommandContext* deviceCommandContext) { m->quadVertices.UploadIfNeeded(deviceCommandContext); m->quadIndices.UploadIfNeeded(deviceCommandContext); } void OverlayRenderer::RenderOverlaysBeforeWater( Renderer::Backend::IDeviceCommandContext* deviceCommandContext) { PROFILE3_GPU("overlays (before)"); GPU_SCOPED_LABEL(deviceCommandContext, "Render overlays before water"); for (SOverlayLine* line : m->lines) { if (line->m_Coords.empty()) continue; g_Renderer.GetDebugRenderer().DrawLine(line->m_Coords, line->m_Color, static_cast(line->m_Thickness)); } } void OverlayRenderer::RenderOverlaysAfterWater( Renderer::Backend::IDeviceCommandContext* deviceCommandContext) { PROFILE3_GPU("overlays (after)"); GPU_SCOPED_LABEL(deviceCommandContext, "Render overlays after water"); RenderTexturedOverlayLines(deviceCommandContext); RenderQuadOverlays(deviceCommandContext); RenderSphereOverlays(deviceCommandContext); } void OverlayRenderer::RenderTexturedOverlayLines(Renderer::Backend::IDeviceCommandContext* deviceCommandContext) { if (m->texlines.empty()) return; CLOSTexture& los = g_Renderer.GetSceneRenderer().GetScene().GetLOSTexture(); if (m->shaderTexLineNormal.technique) { const CShaderTechniquePtr& shaderTechnique = m->shaderTexLineNormal.GetTechnique(); deviceCommandContext->SetGraphicsPipelineState( shaderTechnique->GetGraphicsPipelineState()); deviceCommandContext->BeginPass(); Renderer::Backend::IShaderProgram* shaderTexLineNormal = shaderTechnique->GetShader(); deviceCommandContext->SetTexture( shaderTexLineNormal->GetBindingSlot(str_losTex), los.GetTexture()); const CMatrix3D transform = g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection(); deviceCommandContext->SetUniform( shaderTexLineNormal->GetBindingSlot(str_transform), transform.AsFloatArray()); deviceCommandContext->SetUniform( shaderTexLineNormal->GetBindingSlot(str_losTransform), los.GetTextureMatrix()[0], los.GetTextureMatrix()[12]); // batch render only the non-always-visible overlay lines using the normal shader RenderTexturedOverlayLines(deviceCommandContext, shaderTexLineNormal, false); deviceCommandContext->EndPass(); } if (m->shaderTexLineAlwaysVisible.technique) { const CShaderTechniquePtr& shaderTechnique = m->shaderTexLineAlwaysVisible.GetTechnique(); deviceCommandContext->SetGraphicsPipelineState( shaderTechnique->GetGraphicsPipelineState()); deviceCommandContext->BeginPass(); Renderer::Backend::IShaderProgram* shaderTexLineAlwaysVisible = shaderTechnique->GetShader(); // TODO: losTex and losTransform are unused in the always visible shader; see if these can be safely omitted deviceCommandContext->SetTexture( shaderTexLineAlwaysVisible->GetBindingSlot(str_losTex), los.GetTexture()); const CMatrix3D transform = g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection(); deviceCommandContext->SetUniform( shaderTexLineAlwaysVisible->GetBindingSlot(str_transform), transform.AsFloatArray()); deviceCommandContext->SetUniform( shaderTexLineAlwaysVisible->GetBindingSlot(str_losTransform), los.GetTextureMatrix()[0], los.GetTextureMatrix()[12]); // batch render only the always-visible overlay lines using the LoS-ignored shader RenderTexturedOverlayLines(deviceCommandContext, shaderTexLineAlwaysVisible, true); deviceCommandContext->EndPass(); } } void OverlayRenderer::RenderTexturedOverlayLines( Renderer::Backend::IDeviceCommandContext* deviceCommandContext, Renderer::Backend::IShaderProgram* shader, bool alwaysVisible) { for (size_t i = 0; i < m->texlines.size(); ++i) { SOverlayTexturedLine* line = m->texlines[i]; // render only those lines matching the requested alwaysVisible status if (!line->m_RenderData || line->m_AlwaysVisible != alwaysVisible) continue; ENSURE(line->m_RenderData); line->m_RenderData->Render( deviceCommandContext, m->texturedLineVertexInputLayout, *line, shader); } } void OverlayRenderer::RenderQuadOverlays( Renderer::Backend::IDeviceCommandContext* deviceCommandContext) { if (m->quadBatchMap.empty()) return; if (!m->shaderQuadOverlay.technique) return; const CShaderTechniquePtr& shaderTechnique = m->shaderQuadOverlay.GetTechnique(); deviceCommandContext->SetGraphicsPipelineState( shaderTechnique->GetGraphicsPipelineState()); deviceCommandContext->BeginPass(); Renderer::Backend::IShaderProgram* shader = shaderTechnique->GetShader(); CLOSTexture& los = g_Renderer.GetSceneRenderer().GetScene().GetLOSTexture(); deviceCommandContext->SetTexture( shader->GetBindingSlot(str_losTex), los.GetTexture()); deviceCommandContext->SetUniform( shader->GetBindingSlot(str_losTransform), los.GetTextureMatrix()[0], los.GetTextureMatrix()[12]); const CMatrix3D transform = g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection(); deviceCommandContext->SetUniform( shader->GetBindingSlot(str_transform), transform.AsFloatArray()); const uint32_t vertexStride = m->quadVertices.GetStride(); const uint32_t firstVertexOffset = m->quadVertices.GetOffset() * vertexStride; deviceCommandContext->SetVertexInputLayout(m->quadVertexInputLayout); deviceCommandContext->SetVertexBuffer( 0, m->quadVertices.GetBuffer(), firstVertexOffset); deviceCommandContext->SetIndexBuffer(m->quadIndices.GetBuffer()); const int32_t baseTexBindingSlot = shader->GetBindingSlot(str_baseTex); const int32_t maskTexBindingSlot = shader->GetBindingSlot(str_maskTex); for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it) { QuadBatchData& batchRenderData = it->second; const size_t batchNumQuads = batchRenderData.m_NumRenderQuads; if (batchNumQuads == 0) continue; const QuadBatchKey& maskPair = it->first; maskPair.m_Texture->UploadBackendTextureIfNeeded(deviceCommandContext); maskPair.m_TextureMask->UploadBackendTextureIfNeeded(deviceCommandContext); deviceCommandContext->SetTexture( baseTexBindingSlot, maskPair.m_Texture->GetBackendTexture()); deviceCommandContext->SetTexture( maskTexBindingSlot, maskPair.m_TextureMask->GetBackendTexture()); deviceCommandContext->DrawIndexed(m->quadIndices.GetOffset() + batchRenderData.m_IndicesBase, batchNumQuads * 6, 0); g_Renderer.GetStats().m_DrawCalls++; g_Renderer.GetStats().m_OverlayTris += batchNumQuads*2; } deviceCommandContext->EndPass(); } void OverlayRenderer::RenderForegroundOverlays( Renderer::Backend::IDeviceCommandContext* deviceCommandContext, const CCamera& viewCamera) { PROFILE3_GPU("overlays (fg)"); GPU_SCOPED_LABEL(deviceCommandContext, "Render foreground overlays"); const CVector3D right = -viewCamera.GetOrientation().GetLeft(); const CVector3D up = viewCamera.GetOrientation().GetUp(); const CShaderTechniquePtr& shaderTechnique = m->shaderForegroundOverlay.GetTechnique(); deviceCommandContext->SetGraphicsPipelineState( shaderTechnique->GetGraphicsPipelineState()); deviceCommandContext->BeginPass(); Renderer::Backend::IShaderProgram* shader = shaderTechnique->GetShader(); const CMatrix3D transform = g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection(); deviceCommandContext->SetUniform( shader->GetBindingSlot(str_transform), transform.AsFloatArray()); const CVector2D uvs[6] = { {0.0f, 1.0f}, {1.0f, 1.0f}, {1.0f, 0.0f}, {0.0f, 1.0f}, {1.0f, 0.0f}, {0.0f, 0.0f}, }; deviceCommandContext->SetVertexInputLayout(m->foregroundVertexInputLayout); deviceCommandContext->SetVertexBufferData( 1, &uvs[0], std::size(uvs) * sizeof(uvs[0])); const int32_t baseTexBindingSlot = shader->GetBindingSlot(str_baseTex); const int32_t colorMulBindingSlot = shader->GetBindingSlot(str_colorMul); for (size_t i = 0; i < m->sprites.size(); ++i) { SOverlaySprite* sprite = m->sprites[i]; if (!i || sprite->m_Texture != m->sprites[i - 1]->m_Texture) { sprite->m_Texture->UploadBackendTextureIfNeeded(deviceCommandContext); deviceCommandContext->SetTexture( baseTexBindingSlot, sprite->m_Texture->GetBackendTexture()); } deviceCommandContext->SetUniform( colorMulBindingSlot, sprite->m_Color.AsFloatArray()); const CVector3D position[6] = { sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y0, sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y0, sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y1, sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y0, sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y1, sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y1 }; deviceCommandContext->SetVertexBufferData( 0, &position[0].X, std::size(position) * sizeof(position[0])); deviceCommandContext->Draw(0, 6); g_Renderer.GetStats().m_DrawCalls++; g_Renderer.GetStats().m_OverlayTris += 2; } deviceCommandContext->EndPass(); } static void TessellateSphereFace(const CVector3D& a, u16 ai, const CVector3D& b, u16 bi, const CVector3D& c, u16 ci, std::vector& vertexes, std::vector& indexes, int level) { if (level == 0) { indexes.push_back(ai); indexes.push_back(bi); indexes.push_back(ci); } else { CVector3D d = (a + b).Normalized(); CVector3D e = (b + c).Normalized(); CVector3D f = (c + a).Normalized(); int di = vertexes.size() / 3; vertexes.push_back(d.X); vertexes.push_back(d.Y); vertexes.push_back(d.Z); int ei = vertexes.size() / 3; vertexes.push_back(e.X); vertexes.push_back(e.Y); vertexes.push_back(e.Z); int fi = vertexes.size() / 3; vertexes.push_back(f.X); vertexes.push_back(f.Y); vertexes.push_back(f.Z); TessellateSphereFace(a,ai, d,di, f,fi, vertexes, indexes, level-1); TessellateSphereFace(d,di, b,bi, e,ei, vertexes, indexes, level-1); TessellateSphereFace(f,fi, e,ei, c,ci, vertexes, indexes, level-1); TessellateSphereFace(d,di, e,ei, f,fi, vertexes, indexes, level-1); } } static void TessellateSphere(std::vector& vertexes, std::vector& indexes, int level) { /* Start with a tetrahedron, then tessellate */ float s = sqrtf(0.5f); #define VERT(a,b,c) vertexes.push_back(a); vertexes.push_back(b); vertexes.push_back(c); VERT(-s, 0, -s); VERT( s, 0, -s); VERT( s, 0, s); VERT(-s, 0, s); VERT( 0, -1, 0); VERT( 0, 1, 0); #define FACE(a,b,c) \ TessellateSphereFace( \ CVector3D(vertexes[a*3], vertexes[a*3+1], vertexes[a*3+2]), a, \ CVector3D(vertexes[b*3], vertexes[b*3+1], vertexes[b*3+2]), b, \ CVector3D(vertexes[c*3], vertexes[c*3+1], vertexes[c*3+2]), c, \ vertexes, indexes, level); FACE(0,4,1); FACE(1,4,2); FACE(2,4,3); FACE(3,4,0); FACE(1,5,0); FACE(2,5,1); FACE(3,5,2); FACE(0,5,3); #undef FACE #undef VERT } void OverlayRendererInternals::GenerateSphere() { if (sphereVertexes.empty()) TessellateSphere(sphereVertexes, sphereIndexes, 3); } void OverlayRenderer::RenderSphereOverlays( Renderer::Backend::IDeviceCommandContext* deviceCommandContext) { PROFILE3_GPU("overlays (spheres)"); if (m->spheres.empty() || m->shaderOverlaySolid.technique) return; const CShaderTechniquePtr& shaderTechnique = m->shaderOverlaySolid.GetTechnique(); deviceCommandContext->SetGraphicsPipelineState( shaderTechnique->GetGraphicsPipelineState()); deviceCommandContext->BeginPass(); Renderer::Backend::IShaderProgram* shader = shaderTechnique->GetShader(); const CMatrix3D transform = g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection(); deviceCommandContext->SetUniform( shader->GetBindingSlot(str_transform), transform.AsFloatArray()); m->GenerateSphere(); deviceCommandContext->SetVertexInputLayout(m->sphereVertexInputLayout); deviceCommandContext->SetVertexBufferData( 0, m->sphereVertexes.data(), m->sphereVertexes.size() * sizeof(m->sphereVertexes[0])); deviceCommandContext->SetIndexBufferData( m->sphereIndexes.data(), m->sphereIndexes.size() * sizeof(m->sphereIndexes[0])); for (const SOverlaySphere* sphere : m->spheres) { const CVector4D instancingTransform{ sphere->m_Center.X, sphere->m_Center.Y, sphere->m_Center.Z, sphere->m_Radius}; deviceCommandContext->SetUniform( shader->GetBindingSlot(str_instancingTransform), instancingTransform.AsFloatArray()); deviceCommandContext->SetUniform( shader->GetBindingSlot(str_color), sphere->m_Color.AsFloatArray()); deviceCommandContext->DrawIndexed(0, m->sphereIndexes.size(), 0); g_Renderer.GetStats().m_DrawCalls++; g_Renderer.GetStats().m_OverlayTris = m->sphereIndexes.size()/3; } deviceCommandContext->EndPass(); }