0ad/source/lib/res/graphics/tex_dds.cpp
janwas 64ef19475d # housekeeping
terrain: fix unused a90 etc. warnings by commenting them out
renamed ERR_TEX_CODEC_CANNOT_HANDLE to INFO_.. (to prevent the kind of
mistake that philip just fixed)

This was SVN commit r3805.
2006-04-24 01:50:32 +00:00

654 lines
18 KiB
C++

/**
* =========================================================================
* File : tex_dds.cpp
* Project : 0 A.D.
* Description : DDS (DirectDraw Surface) codec.
*
* @author Jan.Wassenberg@stud.uni-karlsruhe.de
* =========================================================================
*/
/*
* Copyright (c) 2004 Jan Wassenberg
*
* Redistribution and/or modification are also permitted under the
* terms of the GNU General Public License as published by the
* Free Software Foundation (version 2 or later, at your option).
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "precompiled.h"
#include "lib/byte_order.h"
#include "lib/res/mem.h"
#include "tex_codec.h"
// NOTE: the convention is bottom-up for DDS, but there's no way to tell.
//-----------------------------------------------------------------------------
// S3TC decompression
//-----------------------------------------------------------------------------
// note: this code is not so efficient (mostly due to splitting it up
// into function calls for readability). that's because it's only used to
// emulate hardware S3TC support - if that isn't available, everything will
// be dog-slow anyway due to increased vmem usage.
// pixel colors are stored as uint[4]. uint rather than u8 protects from
// overflow during calculations, and padding to an even size is a bit
// more efficient (even though we don't need the alpha component).
enum RGBA { R, G, B, A };
static inline void mix_2_3(uint dst[4], uint c0[4], uint c1[4])
{
for(int i = 0; i < 3; i++) dst[i] = (c0[i]*2 + c1[i] + 1)/3;
}
static inline void mix_avg(uint dst[4], uint c0[4], uint c1[4])
{
for(int i = 0; i < 3; i++) dst[i] = (c0[i]+c1[i])/2;
}
static inline uint access_bit_tbl(u32 tbl, uint idx, uint bit_width)
{
uint val = tbl >> (idx*bit_width);
val &= (1u << bit_width)-1;
return val;
}
static inline uint access_bit_tbl64(u64 tbl, uint idx, uint bit_width)
{
uint val = (uint)(tbl >> (idx*bit_width));
val &= (1u << bit_width)-1;
return val;
}
// extract a range of bits and expand to 8 bits (by replicating
// MS bits - see http://www.mindcontrol.org/~hplus/graphics/expand-bits.html ;
// this is also the algorithm used by graphics cards when decompressing S3TC).
// used to convert 565 to 32bpp RGB.
static inline uint unpack_to_8(u16 c, uint bits_below, uint num_bits)
{
const uint num_filler_bits = 8-num_bits;
const uint field = bits(c, bits_below, bits_below+num_bits-1);
const uint filler = field >> (8-num_bits);
return (field << num_filler_bits) | filler;
}
// for efficiency, we precalculate as much as possible about a block
// and store it here.
struct S3tcBlock
{
// the 4 color choices for each pixel (RGBA)
uint c[4][4]; // c[i][RGBA_component]
// (DXT5 only) the 8 alpha choices
u8 dxt5_a_tbl[8];
// alpha block; interpretation depends on dxt.
u64 a_bits;
// table of 2-bit color selectors
u32 c_selectors;
uint dxt;
};
static void s3tc_precalc_alpha(uint dxt, const u8* restrict a_block, S3tcBlock* restrict b)
{
// read block contents
const uint a0 = a_block[0], a1 = a_block[1];
b->a_bits = read_le64(a_block); // see below
if(dxt == 5)
{
// skip a0,a1 bytes (data is little endian)
b->a_bits >>= 16;
const bool is_dxt5_special_combination = (a0 <= a1);
u8* a = b->dxt5_a_tbl; // shorthand
if(is_dxt5_special_combination)
{
a[0] = a0;
a[1] = a1;
a[2] = (4*a0 + 1*a1 + 2)/5;
a[3] = (3*a0 + 2*a1 + 2)/5;
a[4] = (2*a0 + 3*a1 + 2)/5;
a[5] = (1*a0 + 4*a1 + 2)/5;
a[6] = 0;
a[7] = 255;
}
else
{
a[0] = a0;
a[1] = a1;
a[2] = (6*a0 + 1*a1 + 3)/7;
a[3] = (5*a0 + 2*a1 + 3)/7;
a[4] = (4*a0 + 3*a1 + 3)/7;
a[5] = (3*a0 + 4*a1 + 3)/7;
a[6] = (2*a0 + 5*a1 + 3)/7;
a[7] = (1*a0 + 6*a1 + 3)/7;
}
}
}
static void s3tc_precalc_color(uint dxt, const u8* restrict c_block, S3tcBlock* restrict b)
{
// read block contents
// .. S3TC reference colors (565 format). the color table is generated
// from some combination of these, depending on their ordering.
u16 rc[2];
for(int i = 0; i < 2; i++)
rc[i] = read_le16(c_block + 2*i);
// .. table of 2-bit color selectors
b->c_selectors = read_le32(c_block+4);
const bool is_dxt1_special_combination =
(dxt == 1 || dxt == DXT1A) && rc[0] <= rc[1];
// c0 and c1 are the values of rc[], converted to 32bpp
for(int i = 0; i < 2; i++)
{
b->c[i][R] = unpack_to_8(rc[i], 11, 5);
b->c[i][G] = unpack_to_8(rc[i], 5, 6);
b->c[i][B] = unpack_to_8(rc[i], 0, 5);
}
// c2 and c3 are combinations of c0 and c1:
if(is_dxt1_special_combination)
{
mix_avg(b->c[2], b->c[0], b->c[1]); // c2 = (c0+c1)/2
for(int i = 0; i < 3; i++) b->c[3][i] = 0; // c3 = black
b->c[3][A] = (dxt == DXT1A)? 0 : 255; // (transparent iff DXT1a)
}
else
{
mix_2_3(b->c[2], b->c[0], b->c[1]); // c2 = 2/3*c0 + 1/3*c1
mix_2_3(b->c[3], b->c[1], b->c[0]); // c3 = 1/3*c0 + 2/3*c1
}
}
static void s3tc_precalc_block(uint dxt, const u8* restrict block, S3tcBlock* restrict b)
{
b->dxt = dxt;
// (careful, 'dxt != 1' doesn't work - there's also DXT1a)
const u8* a_block = block;
const u8* c_block = (dxt == 3 || dxt == 5)? block+8 : block;
s3tc_precalc_alpha(dxt, a_block, b);
s3tc_precalc_color(dxt, c_block, b);
}
static void s3tc_write_pixel(const S3tcBlock* restrict b, uint pixel_idx, u8* restrict out)
{
debug_assert(pixel_idx < 16);
// pixel index -> color selector (2 bit) -> color
const uint c_selector = access_bit_tbl(b->c_selectors, pixel_idx, 2);
const uint* c = b->c[c_selector];
for(int i = 0; i < 3; i++)
out[i] = c[i];
// if no alpha, done
if(b->dxt == 1)
return;
uint a;
if(b->dxt == 3)
{
// table of 4-bit alpha entries
a = access_bit_tbl64(b->a_bits, pixel_idx, 4);
a |= a << 4; // expand to 8 bits (replicate high into low!)
}
else if(b->dxt == 5)
{
// pixel index -> alpha selector (3 bit) -> alpha
const uint a_selector = access_bit_tbl64(b->a_bits, pixel_idx, 3);
a = b->dxt5_a_tbl[a_selector];
}
// (dxt == DXT1A)
else
a = c[A];
out[A] = a;
}
struct S3tcDecompressInfo
{
uint dxt;
uint s3tc_block_size;
uint out_Bpp;
u8* out;
};
static void s3tc_decompress_level(uint UNUSED(level), uint level_w, uint level_h,
const u8* restrict level_data, size_t level_data_size, void* restrict ctx)
{
S3tcDecompressInfo* di = (S3tcDecompressInfo*)ctx;
const uint dxt = di->dxt;
const uint s3tc_block_size = di->s3tc_block_size;
// note: 1x1 images are legitimate (e.g. in mipmaps). they report their
// width as such for glTexImage, but the S3TC data is padded to
// 4x4 pixel block boundaries.
const uint blocks_w = (uint)round_up(level_w, 4) / 4;
const uint blocks_h = (uint)round_up(level_h, 4) / 4;
const u8* s3tc_data = level_data;
debug_assert(level_data_size % s3tc_block_size == 0);
for(uint block_y = 0; block_y < blocks_h; block_y++)
for(uint block_x = 0; block_x < blocks_w; block_x++)
{
S3tcBlock b;
s3tc_precalc_block(dxt, s3tc_data, &b);
s3tc_data += s3tc_block_size;
uint pixel_idx = 0;
for(int y = 0; y < 4; y++)
{
// this is ugly, but advancing after x, y and block_y loops
// is no better.
u8* out = (u8*)di->out + ((block_y*4+y)*blocks_w*4 + block_x*4) * di->out_Bpp;
for(int x = 0; x < 4; x++)
{
s3tc_write_pixel(&b, pixel_idx, out);
out += di->out_Bpp;
pixel_idx++;
}
}
} // for block_x
debug_assert(s3tc_data == level_data + level_data_size);
di->out += blocks_w*blocks_h * 16 * di->out_Bpp;
}
// decompress the given image (which is known to be stored as DXTn)
// effectively in-place. updates Tex fields.
static LibError s3tc_decompress(Tex* t)
{
// alloc new image memory
// notes:
// - dxt == 1 is the only non-alpha case.
// - adding or stripping alpha channels during transform is not
// our job; we merely output the same pixel format as given
// (tex.cpp's plain transform could cover it, if ever needed).
const uint dxt = t->flags & TEX_DXT;
const uint out_bpp = (dxt != 1)? 32 : 24;
Handle hm;
const size_t out_size = tex_img_size(t) * out_bpp / t->bpp;
void* out_data = mem_alloc(out_size, 64*KiB, 0, &hm);
if(!out_data)
WARN_RETURN(ERR_NO_MEM);
const uint s3tc_block_size = (dxt == 3 || dxt == 5)? 16 : 8;
S3tcDecompressInfo di = { dxt, s3tc_block_size, out_bpp/8, (u8*)out_data };
const u8* s3tc_data = tex_get_data(t);
const int levels_to_skip = (t->flags & TEX_MIPMAPS)? 0 : TEX_BASE_LEVEL_ONLY;
tex_util_foreach_mipmap(t->w, t->h, t->bpp, s3tc_data, levels_to_skip, 4, s3tc_decompress_level, &di);
(void)mem_free_h(t->hm);
t->hm = hm;
t->ofs = 0;
t->bpp = out_bpp;
t->flags &= ~TEX_DXT;
return ERR_OK;
}
//-----------------------------------------------------------------------------
// DDS file format
//-----------------------------------------------------------------------------
// bit values and structure definitions taken from
// http://msdn.microsoft.com/archive/en-us/directx9_c/directx/graphics/reference/DDSFileReference/ddsfileformat.asp
#pragma pack(push, 1)
// DDPIXELFORMAT.dwFlags
// we've seen some DXT3 files that don't have this set (which is nonsense;
// any image lacking alpha should be stored as DXT1). it's authoritative
// if fourcc is DXT1 (there's no other way to tell DXT1 and DXT1a apart)
// and ignored otherwise.
#define DDPF_ALPHAPIXELS 0x00000001
#define DDPF_FOURCC 0x00000004
#define DDPF_RGB 0x00000040
typedef struct
{
u32 dwSize; // size of structure (32)
u32 dwFlags; // indicates which fields are valid
u32 dwFourCC; // (DDPF_FOURCC) FOURCC code, "DXTn"
u32 dwRGBBitCount; // (DDPF_RGB) bits per pixel
u32 dwRBitMask;
u32 dwGBitMask;
u32 dwBBitMask;
u32 dwRGBAlphaBitMask;
}
DDPIXELFORMAT;
// DDCAPS2.dwCaps1
#define DDSCAPS_COMPLEX 0x00000008
#define DDSCAPS_TEXTURE 0x00001000
#define DDSCAPS_MIPMAP 0x00400000
// DDCAPS2.dwCaps2
#define DDSCAPS2_CUBEMAP 0x00000200
#define DDSCAPS2_CUBEMAP_POSITIVEX 0x00000400
#define DDSCAPS2_CUBEMAP_NEGATIVEX 0x00000800
#define DDSCAPS2_CUBEMAP_POSITIVEY 0x00001000
#define DDSCAPS2_CUBEMAP_NEGATIVEY 0x00002000
#define DDSCAPS2_CUBEMAP_POSITIVEZ 0x00004000
#define DDSCAPS2_CUBEMAP_NEGATIVEZ 0x00008000
#define DDSCAPS2_VOLUME 0x00200000
typedef struct
{
u32 dwCaps1;
u32 dwCaps2;
u32 Reserved[2];
}
DDCAPS2;
// DDSURFACEDESC2.dwFlags
#define DDSD_CAPS 0x00000001
#define DDSD_HEIGHT 0x00000002
#define DDSD_WIDTH 0x00000004
#define DDSD_PITCH 0x00000008
#define DDSD_PIXELFORMAT 0x00001000
#define DDSD_MIPMAPCOUNT 0x00020000
#define DDSD_LINEARSIZE 0x00080000
#define DDSD_DEPTH 0x00800000
typedef struct
{
u32 dwSize; // size of structure (124)
u32 dwFlags; // indicates which fields are valid
u32 dwHeight; // (DDSD_HEIGHT) height of main image (pixels)
u32 dwWidth; // (DDSD_WIDTH ) width of main image (pixels)
u32 dwPitchOrLinearSize; // (DDSD_LINEARSIZE) total image size
// (DDSD_PITCH) bytes per row (%4 = 0)
u32 dwDepth; // (DDSD_DEPTH) vol. textures: vol. depth
u32 dwMipMapCount; // (DDSD_MIPMAPCOUNT) total # levels
u32 dwReserved1[11]; // reserved
DDPIXELFORMAT ddpfPixelFormat; // (DDSD_PIXELFORMAT) surface description
DDCAPS2 ddsCaps; // (DDSD_CAPS) misc. surface flags
u32 dwReserved2; // reserved
}
DDSURFACEDESC2;
#pragma pack(pop)
static bool is_valid_dxt(uint dxt)
{
switch(dxt)
{
case 0:
case 1:
case DXT1A:
case 3:
case 5:
return true;
default:
return false;
}
}
// extract all information from DDS pixel format and store in bpp, flags.
// pf points to the DDS file's header; all fields must be endian-converted
// before use.
// output parameters invalid on failure.
static LibError decode_pf(const DDPIXELFORMAT* pf, uint* bpp_, uint* flags_)
{
uint bpp = 0;
uint flags = 0;
// check struct size
if(read_le32(&pf->dwSize) != sizeof(DDPIXELFORMAT))
WARN_RETURN(ERR_TEX_INVALID_SIZE);
// determine type
const u32 pf_flags = read_le32(&pf->dwFlags);
// .. uncompressed
if(pf_flags & DDPF_RGB)
{
const u32 pf_bpp = read_le32(&pf->dwRGBBitCount);
const u32 pf_r_mask = read_le32(&pf->dwRBitMask);
const u32 pf_g_mask = read_le32(&pf->dwGBitMask);
const u32 pf_b_mask = read_le32(&pf->dwBBitMask);
const u32 pf_a_mask = read_le32(&pf->dwRGBAlphaBitMask);
// (checked below; must be set in case below warning is to be
// skipped)
bpp = pf_bpp;
if(pf_flags & DDPF_ALPHAPIXELS)
{
// something weird other than RGBA or BGRA
if(pf_a_mask != 0xFF000000)
goto unsupported_component_ordering;
flags |= TEX_ALPHA;
}
// make sure component ordering is 0xBBGGRR = RGB (see below)
if(pf_r_mask != 0xFF || pf_g_mask != 0xFF00 || pf_b_mask != 0xFF0000)
{
// DDPIXELFORMAT in theory supports any ordering of R,G,B,A.
// we need to upload to OpenGL, which can only receive BGR(A) or
// RGB(A). the former still requires conversion (done by driver),
// so it's slower. since the very purpose of supporting uncompressed
// DDS is storing images in a format that requires no processing,
// we do not allow any weird orderings that require runtime work.
// instead, the artists must export with the correct settings.
unsupported_component_ordering:
WARN_RETURN(ERR_TEX_FMT_INVALID);
}
RETURN_ERR(tex_validate_plain_format(bpp, flags));
}
// .. compressed
else if(pf_flags & DDPF_FOURCC)
{
// set effective bpp and store DXT format in flags & TEX_DXT.
// no endian conversion necessary - FOURCC() takes care of that.
switch(pf->dwFourCC)
{
case FOURCC('D','X','T','1'):
bpp = 4;
if(pf_flags & DDPF_ALPHAPIXELS)
flags |= DXT1A | TEX_ALPHA;
else
flags |= 1;
break;
case FOURCC('D','X','T','3'):
bpp = 8;
flags |= 3;
flags |= TEX_ALPHA; // see DDPF_ALPHAPIXELS decl
break;
case FOURCC('D','X','T','5'):
bpp = 8;
flags |= 5;
flags |= TEX_ALPHA; // see DDPF_ALPHAPIXELS decl
break;
default:
WARN_RETURN(ERR_TEX_FMT_INVALID);
}
}
// .. neither uncompressed nor compressed - invalid
else
WARN_RETURN(ERR_TEX_FMT_INVALID);
*bpp_ = bpp;
*flags_ = flags;
return ERR_OK;
}
// extract all information from DDS header and store in w, h, bpp, flags.
// sd points to the DDS file's header; all fields must be endian-converted
// before use.
// output parameters invalid on failure.
static LibError decode_sd(const DDSURFACEDESC2* sd, uint* w_, uint* h_,
uint* bpp_, uint* flags_)
{
// check header size
if(read_le32(&sd->dwSize) != sizeof(*sd))
WARN_RETURN(ERR_CORRUPTED);
// flags (indicate which fields are valid)
const u32 sd_flags = read_le32(&sd->dwFlags);
// .. not all required fields are present
// note: we can't guess dimensions - the image may not be square.
const u32 sd_req_flags = DDSD_CAPS|DDSD_HEIGHT|DDSD_WIDTH|DDSD_PIXELFORMAT;
if((sd_flags & sd_req_flags) != sd_req_flags)
WARN_RETURN(ERR_INCOMPLETE_HEADER);
// image dimensions
const u32 h = read_le32(&sd->dwHeight);
const u32 w = read_le32(&sd->dwWidth);
// .. not padded to S3TC block size
if(w % 4 || h % 4)
WARN_RETURN(ERR_TEX_INVALID_SIZE);
// pixel format
uint bpp, flags;
RETURN_ERR(decode_pf(&sd->ddpfPixelFormat, &bpp, &flags));
// verify pitch or linear size, if given
const size_t pitch = w*bpp/8;
const u32 sd_pitch_or_size = read_le32(&sd->dwPitchOrLinearSize);
if(sd_flags & DDSD_PITCH)
{
if(sd_pitch_or_size != round_up(pitch, 4))
WARN_RETURN(ERR_CORRUPTED);
}
if(sd_flags & DDSD_LINEARSIZE)
{
if(sd_pitch_or_size != pitch*h)
WARN_RETURN(ERR_CORRUPTED);
}
// note: both flags set would be invalid; no need to check for that,
// though, since one of the above tests would fail.
// mipmaps
if(sd_flags & DDSD_MIPMAPCOUNT)
{
const u32 mipmap_count = read_le32(&sd->dwMipMapCount);
if(mipmap_count)
{
// mipmap chain is incomplete
// note: DDS includes the base level in its count, hence +1.
if(mipmap_count != log2(MAX(w,h))+1)
WARN_RETURN(ERR_TEX_FMT_INVALID);
flags |= TEX_MIPMAPS;
}
}
// check for volume textures
if(sd_flags & DDSD_DEPTH)
{
const u32 depth = read_le32(&sd->dwDepth);
if(depth)
WARN_RETURN(ERR_NOT_IMPLEMENTED);
}
// check caps
const DDCAPS2* caps = &sd->ddsCaps;
// .. this is supposed to be set, but don't bail if not (pointless)
debug_assert(caps->dwCaps1 & DDSCAPS_TEXTURE);
// .. sanity check: warn if mipmap flag not set (don't bail if not
// because we've already made the decision).
const bool mipmap_cap = (caps->dwCaps1 & DDSCAPS_MIPMAP) != 0;
const bool mipmap_flag = (flags & TEX_MIPMAPS) != 0;
debug_assert(mipmap_cap == mipmap_flag);
// note: we do not check for cubemaps and volume textures (not supported)
// because the file may still have useful data we can read.
*w_ = w;
*h_ = h;
*bpp_ = bpp;
*flags_ = flags;
return ERR_OK;
}
//-----------------------------------------------------------------------------
static bool dds_is_hdr(const u8* file)
{
return *(u32*)file == FOURCC('D','D','S',' ');
}
static bool dds_is_ext(const char* ext)
{
return !stricmp(ext, "dds");
}
static size_t dds_hdr_size(const u8* UNUSED(file))
{
return 4+sizeof(DDSURFACEDESC2);
}
static LibError dds_decode(DynArray* restrict da, Tex* restrict t)
{
u8* file = da->base;
const DDSURFACEDESC2* sd = (const DDSURFACEDESC2*)(file+4);
uint w, h;
uint bpp, flags;
RETURN_ERR(decode_sd(sd, &w, &h, &bpp, &flags));
// note: cannot pass address of these directly to decode_sd because
// they are bitfields.
t->w = w;
t->h = h;
t->bpp = bpp;
t->flags = flags;
return ERR_OK;
}
static LibError dds_encode(Tex* restrict UNUSED(t), DynArray* restrict UNUSED(da))
{
// note: do not return ERR_NOT_IMPLEMENTED et al. because that would
// break tex_write (which assumes either this, 0 or errors are returned).
return INFO_TEX_CODEC_CANNOT_HANDLE;
}
static LibError dds_transform(Tex* t, uint transforms)
{
uint dxt = t->flags & TEX_DXT;
debug_assert(is_valid_dxt(dxt));
const uint transform_dxt = transforms & TEX_DXT;
// requesting decompression
if(dxt && transform_dxt)
{
RETURN_ERR(s3tc_decompress(t));
return ERR_OK;
}
// both are DXT (unsupported; there are no flags we can change while
// compressed) or requesting compression (not implemented) or
// both not DXT (nothing we can do) - bail.
else
return INFO_TEX_CODEC_CANNOT_HANDLE;
}
TEX_CODEC_REGISTER(dds);