/** * ========================================================================= * File : timer.h * Project : 0 A.D. * Description : platform-independent high resolution timer * ========================================================================= */ // license: GPL; see lib/license.txt #ifndef INCLUDED_TIMER #define INCLUDED_TIMER #include "lib/config2.h" // CONFIG2_TIMER_ALLOW_RDTSC #if ARCH_X86_X64 && CONFIG2_TIMER_ALLOW_RDTSC # include "lib/sysdep/arch/x86_x64/x86_x64.h" // x86_x64_rdtsc # include "lib/sysdep/os_cpu.h" // os_cpu_ClockFrequency #endif /** * timer_Time will subsequently return values relative to the current time. **/ LIB_API void timer_LatchStartTime(); /** * @return high resolution (> 1 us) timestamp [s]. **/ LIB_API double timer_Time(void); /** * @return resolution [s] of the timer. **/ LIB_API double timer_Resolution(void); //----------------------------------------------------------------------------- // scope timing /// used by TIMER class ScopeTimer { NONCOPYABLE(ScopeTimer); public: ScopeTimer(const char* description) : m_t0(timer_Time()), m_description(description) { } ~ScopeTimer() { double t1 = timer_Time(); double dt = t1-m_t0; // determine scale factor for pretty display double scale = 1e6; const char* unit = "us"; if(dt > 1.0) scale = 1, unit = "s"; else if(dt > 1e-3) scale = 1e3, unit = "ms"; debug_printf("TIMER| %s: %g %s\n", m_description, dt*scale, unit); } private: double m_t0; const char* m_description; }; /** * Measures the time taken to execute code up until end of the current scope; * displays it via debug_printf. Can safely be nested. * Useful for measuring time spent in a function or basic block. * must remain valid over the lifetime of this object; * a string literal is safest. * * Example usage: * void func() * { * TIMER("description"); * // code to be measured * } **/ #define TIMER(description) ScopeTimer UID__(description) /** * Measures the time taken to execute code between BEGIN and END markers; * displays it via debug_printf. Can safely be nested. * Useful for measuring several pieces of code within the same function/block. * must remain valid over the lifetime of this object; * a string literal is safest. * * Caveats: * - this wraps the code to be measured in a basic block, so any * variables defined there are invisible to surrounding code. * - the description passed to END isn't inspected; you are responsible for * ensuring correct nesting! * * Example usage: * void func2() * { * // uninteresting code * TIMER_BEGIN("description2"); * // code to be measured * TIMER_END("description2"); * // uninteresting code * } **/ #define TIMER_BEGIN(description) { ScopeTimer UID__(description) #define TIMER_END(description) } //----------------------------------------------------------------------------- // cumulative timer API // this supplements in-game profiling by providing low-overhead, // high resolution time accounting of specific areas. // since TIMER_ACCRUE et al. are called so often, we try to keep // overhead to an absolute minimum. storing raw tick counts (e.g. CPU cycles // returned by ia32_rdtsc) instead of absolute time has two benefits: // - no need to convert from raw->time on every call // (instead, it's only done once when displaying the totals) // - possibly less overhead to querying the time itself // (timer_Time may be using slower time sources with ~3us overhead) // // however, the cycle count is not necessarily a measure of wall-clock time // (see http://www.gamedev.net/reference/programming/features/timing). // therefore, on systems with SpeedStep active, measurements of I/O or other // non-CPU bound activity may be skewed. this is ok because the timer is // only used for profiling; just be aware of the issue. // if this is a problem, disable CONFIG2_TIMER_ALLOW_RDTSC. // // note that overflow isn't an issue either way (63 bit cycle counts // at 10 GHz cover intervals of 29 years). #if ARCH_X86_X64 && CONFIG2_TIMER_ALLOW_RDTSC class TimerUnit { public: void SetToZero() { m_ticks = 0; } void SetFromTimer() { m_ticks = x86_x64_rdtsc(); } void AddDifference(TimerUnit t0, TimerUnit t1) { m_ticks += t1.m_ticks - t0.m_ticks; } void Subtract(TimerUnit t) { m_ticks -= t.m_ticks; } std::string ToString() const { debug_assert(m_ticks >= 0.0); // determine scale factor for pretty display double scale = 1.0; const char* unit = " c"; if(m_ticks > 10000000000LL) // 10 Gc scale = 1e-9, unit = " Gc"; else if(m_ticks > 10000000) // 10 Mc scale = 1e-6, unit = " Mc"; else if(m_ticks > 10000) // 10 kc scale = 1e-3, unit = " kc"; std::stringstream ss; ss << m_ticks*scale; ss << unit; return ss.str(); } double ToSeconds() const { return m_ticks / os_cpu_ClockFrequency(); } private: u64 m_ticks; }; #else class TimerUnit { public: void SetToZero() { m_seconds = 0.0; } void SetFromTimer() { m_seconds = timer_Time(); } void AddDifference(TimerUnit t0, TimerUnit t1) { m_seconds += t1.m_seconds - t0.m_seconds; } void Subtract(TimerUnit t) { m_seconds -= t.m_seconds; } std::string ToString() const { debug_assert(m_seconds >= 0.0); // determine scale factor for pretty display double scale = 1e6; const char* unit = " us"; if(m_seconds > 1.0) scale = 1, unit = " s"; else if(m_seconds > 1e-3) scale = 1e3, unit = " ms"; std::stringstream ss; ss << m_seconds*scale; ss << unit; return ss.str(); } double ToSeconds() const { return m_seconds; } private: double m_seconds; }; #endif // opaque - do not access its fields! // note: must be defined here because clients instantiate them; // fields cannot be made private due to POD requirement. struct TimerClient { TimerUnit sum; // total bill // only store a pointer for efficiency. const char* description; TimerClient* next; // how often timer_BillClient was called (helps measure relative // performance of something that is done indeterminately often). size_t num_calls; }; /** * make the given TimerClient (usually instantiated as static data) * ready for use. returns its address for TIMER_ADD_CLIENT's convenience. * this client's total (added to by timer_BillClient) will be * displayed by timer_DisplayClientTotals. * notes: * - may be called at any time; * - always succeeds (there's no fixed limit); * - free() is not needed nor possible. * - description must remain valid until exit; a string literal is safest. **/ LIB_API TimerClient* timer_AddClient(TimerClient* tc, const char* description); /** * "allocate" a new TimerClient that will keep track of the total time * billed to it, along with a description string. These are displayed when * timer_DisplayClientTotals is called. * Invoke this at file or function scope; a (static) TimerClient pointer of * name will be defined, which should be passed to TIMER_ACCRUE. **/ #define TIMER_ADD_CLIENT(id)\ static TimerClient UID__;\ static TimerClient* id = timer_AddClient(&UID__, #id); /** * bill the difference between t0 and t1 to the client's total. **/ LIB_API void timer_BillClient(TimerClient* tc, TimerUnit t0, TimerUnit t1); /** * display all clients' totals; does not reset them. * typically called at exit. **/ LIB_API void timer_DisplayClientTotals(); /// used by TIMER_ACCRUE class ScopeTimerAccrue { NONCOPYABLE(ScopeTimerAccrue); public: ScopeTimerAccrue(TimerClient* tc) : m_tc(tc) { m_t0.SetFromTimer(); } ~ScopeTimerAccrue() { TimerUnit t1; t1.SetFromTimer(); timer_BillClient(m_tc, m_t0, t1); } private: TimerUnit m_t0; TimerClient* m_tc; }; /** * Measure the time taken to execute code up until end of the current scope; * bill it to the given TimerClient object. Can safely be nested. * Useful for measuring total time spent in a function or basic block over the * entire program. * must remain valid over the lifetime of this object; * a string literal is safest. * * Example usage: * TIMER_ADD_CLIENT(identifier) * * void func() * { * TIMER_ACCRUE(name_of_pointer_to_client); * // code to be measured * } * * [at exit] * timer_DisplayClientTotals(); **/ #define TIMER_ACCRUE(client) ScopeTimerAccrue UID__(client) #endif // #ifndef INCLUDED_TIMER