/* Copyright (C) 2010 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #ifndef INCLUDED_FIXED_VECTOR2D #define INCLUDED_FIXED_VECTOR2D #include "maths/Fixed.h" #include "maths/Sqrt.h" class CFixedVector2D { private: typedef CFixed_23_8 fixed; public: fixed X, Y; CFixedVector2D() { } CFixedVector2D(fixed X, fixed Y) : X(X), Y(Y) { } /// Vector equality bool operator==(const CFixedVector2D& v) const { return (X == v.X && Y == v.Y); } /// Vector inequality bool operator!=(const CFixedVector2D& v) const { return (X != v.X || Y != v.Y); } /// Vector addition CFixedVector2D operator+(const CFixedVector2D& v) const { return CFixedVector2D(X + v.X, Y + v.Y); } /// Vector subtraction CFixedVector2D operator-(const CFixedVector2D& v) const { return CFixedVector2D(X - v.X, Y - v.Y); } /// Negation CFixedVector2D operator-() const { return CFixedVector2D(-X, -Y); } /// Vector addition CFixedVector2D& operator+=(const CFixedVector2D& v) { *this = *this + v; return *this; } /// Vector subtraction CFixedVector2D& operator-=(const CFixedVector2D& v) { *this = *this - v; return *this; } /// Scalar multiplication by an integer CFixedVector2D operator*(int n) const { return CFixedVector2D(X*n, Y*n); } /** * Multiply by a CFixed. Likely to overflow if both numbers are large, * so we use an ugly name instead of operator* to make it obvious. */ CFixedVector2D Multiply(fixed n) const { return CFixedVector2D(X.Multiply(n), Y.Multiply(n)); } /** * Returns the length of the vector. * Will not overflow if the result can be represented as type 'fixed'. */ fixed Length() const { // Do intermediate calculations with 64-bit ints to avoid overflows i64 x = (i64)X.GetInternalValue(); i64 y = (i64)Y.GetInternalValue(); u64 d2 = (u64)(x * x + y * y); u32 d = isqrt64(d2); fixed r; r.SetInternalValue((i32)d); return r; } bool IsZero() const { return (X.IsZero() && Y.IsZero()); } /** * Normalize the vector so that length is close to 1. * If length is 0, does nothing. * WARNING: The fixed-point numbers only have 8-bit fractional parts, so * a normalized vector will be very imprecise. */ void Normalize() { if (!IsZero()) { fixed l = Length(); X = X / l; Y = Y / l; } } /** * Normalize the vector so that length is close to n. * If length is 0, does nothing. */ void Normalize(fixed n) { if (n.IsZero()) { X = Y = fixed::FromInt(0); return; } fixed l = Length(); // TODO: work out whether this is giving decent precision fixed d = l / n; if (!d.IsZero()) { X = X / d; Y = Y / d; } } /** * Compute the dot product of this vector with another. */ fixed Dot(const CFixedVector2D& v) { i64 x = (i64)X.GetInternalValue() * (i64)v.X.GetInternalValue(); i64 y = (i64)Y.GetInternalValue() * (i64)v.Y.GetInternalValue(); i64 sum = x + y; fixed ret; ret.SetInternalValue((i32)(sum >> fixed::fract_bits)); return ret; } CFixedVector2D Perpendicular() { return CFixedVector2D(Y, -X); } }; #endif // INCLUDED_FIXED_VECTOR2D