0ad/source/lib/res/mem.cpp

433 lines
9.3 KiB
C++
Raw Normal View History

/**
* =========================================================================
* File : mem.cpp
* Project : 0 A.D.
* Description : wrapper that treats memory as a "resource", i.e.
* : guarantees its lifetime and automatic release.
* =========================================================================
*/
// license: GPL; see lib/license.txt
#include "precompiled.h"
#include "mem.h"
#include <stdlib.h>
#include <map>
#include "lib/posix/posix_pthread.h"
#include "lib/bits.h"
#include "lib/allocators.h" // OverrunProtector
#include "h_mgr.h"
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
struct ScopedLock
{
ScopedLock() { pthread_mutex_lock(&mutex); }
~ScopedLock() { pthread_mutex_unlock(&mutex); }
};
#define SCOPED_LOCK ScopedLock UID__;
struct Mem
{
// initially what mem_alloc returns; can be changed via mem_assign_user
void* p;
size_t size;
// unaligned mem from allocator
void* raw_p;
size_t raw_size;
uintptr_t ctx;
MEM_DTOR dtor; // this allows user-specified dtors.
void* owner;
};
H_TYPE_DEFINE(Mem);
//////////////////////////////////////////////////////////////////////////////
// raw pointer -> Handle
typedef std::map<void*, Handle> Ptr2H;
typedef Ptr2H::iterator It;
static OverrunProtector<Ptr2H> ptr2h_wrapper;
// not needed by other modules - mem_get_size and mem_wrap is enough.
static Handle find_alloc(void* target_raw_p, It* out_it = 0)
{
Ptr2H* ptr2h = ptr2h_wrapper.get();
if(!ptr2h)
WARN_RETURN(ERR::NO_MEM);
// early out optimization (don't pay for full subset check)
It it = ptr2h->find(target_raw_p);
if(it != ptr2h->end())
return it->second;
// initial return value: "not found"
Handle ret = -1;
// not found; now check if target_raw_p is within one of the mem ranges
for(it = ptr2h->begin(); it != ptr2h->end(); ++it)
{
void* raw_p = it->first;
Handle hm = it->second;
// not before this alloc's p; could be it. now do range check.
if(target_raw_p >= raw_p)
{
Mem* m = (Mem*)h_user_data(hm, H_Mem);
if(m)
{
// found it within this mem range.
if(target_raw_p <= (char*)m->raw_p + m->raw_size)
{
if(out_it)
*out_it = it;
ret = hm;
break;
}
}
}
}
ptr2h_wrapper.lock();
return ret;
}
// raw_p must be in map!
static void remove_alloc(void* raw_p)
{
Ptr2H* ptr2h = ptr2h_wrapper.get();
if(!ptr2h)
return;
//debug_printf("REMOVE raw_p=%p\n", raw_p);
size_t num_removed = ptr2h->erase(raw_p);
if(num_removed != 1)
debug_warn("not in map");
ptr2h_wrapper.lock();
}
// raw_p must not already be in map!
static void set_alloc(void* raw_p, Handle hm)
{
Ptr2H* ptr2h = ptr2h_wrapper.get();
if(!ptr2h)
return;
//debug_printf("SETALLOC raw_p=%p hm=%I64x\n", raw_p, hm);
std::pair<It, bool> ret = ptr2h->insert(std::make_pair(raw_p, hm));
if(!ret.second)
debug_warn("already in map");
ptr2h_wrapper.lock();
}
//////////////////////////////////////////////////////////////////////////////
static void Mem_init(Mem* m, va_list args)
{
// these are passed to h_alloc instead of assigning in mem_wrap after a
// H_DEREF so that Mem_validate won't complain about invalid (0) values.
//
// additional bonus: by setting raw_p before reload, that and the
// dtor will be the only call site of set/remove_alloc.
m->p = va_arg(args, void*);
m->size = va_arg(args, size_t);
m->raw_p = va_arg(args, void*);
m->raw_size = va_arg(args, size_t);
m->dtor = va_arg(args, MEM_DTOR);
m->ctx = va_arg(args, uintptr_t);
m->owner = va_arg(args, void*);
}
static void Mem_dtor(Mem* m)
{
// (reload can't fail)
remove_alloc(m->raw_p);
if(m->dtor)
m->dtor(m->raw_p, m->raw_size, m->ctx);
}
// can't alloc here, because h_alloc needs the key when called
// (key == pointer we allocate)
static LibError Mem_reload(Mem* m, const char* UNUSED(fn), Handle hm)
{
set_alloc(m->raw_p, hm);
return INFO::OK;
}
static LibError Mem_validate(const Mem* m)
{
if(debug_is_pointer_bogus(m->p))
WARN_RETURN(ERR::_1);
if(!m->size)
WARN_RETURN(ERR::_2);
if(m->raw_p && m->raw_p > m->p)
WARN_RETURN(ERR::_3);
if(m->raw_size && m->raw_size < m->size)
WARN_RETURN(ERR::_4);
return INFO::OK;
}
static LibError Mem_to_string(const Mem* m, char* buf)
{
char owner_sym[DBG_SYMBOL_LEN];
if(debug_resolve_symbol(m->owner, owner_sym, 0, 0) < 0)
{
if(m->owner)
snprintf(owner_sym, ARRAY_SIZE(owner_sym), "(%p)", m->owner);
else
strcpy_s(owner_sym, ARRAY_SIZE(owner_sym), "(?)");
}
snprintf(buf, H_STRING_LEN, "p=%p size=%d owner=%s", m->p, m->size, owner_sym);
return INFO::OK;
}
//////////////////////////////////////////////////////////////////////////////
// "*": aligned memory returned by allocator.
// "user_*": same as above, until someones changes it via mem_assign_user
// allocator interface:
// alloc: return at least size bytes of memory (alignment done by caller)
//////////////////////////////////////////////////////////////////////////////
// implementation must be thread-safe! (since mem_alloc doesn't take a lock)
static void heap_free(void* raw_p, size_t UNUSED(raw_size), uintptr_t UNUSED(ctx))
{
free(raw_p);
}
static void* heap_alloc(size_t raw_size, uintptr_t& ctx)
{
ctx = 0;
void* raw_p = malloc(raw_size);
return raw_p;
}
//////////////////////////////////////////////////////////////////////////////
LibError mem_free_h(Handle& hm)
{
SCOPED_LOCK;
return h_free(hm, H_Mem);
}
LibError mem_free_p(void*& p)
{
if(!p)
return INFO::OK;
Handle hm;
{
SCOPED_LOCK;
hm = find_alloc(p);
}
p = 0;
if(hm <= 0)
WARN_RETURN(ERR::MEM_ALLOC_NOT_FOUND);
return mem_free_h(hm);
}
// create a H_MEM handle of type MEM_USER,
// and assign it the specified memory range.
// if dtor is non-NULL, it is called (passing ctx) when the handle is freed.
Handle mem_wrap(void* p, size_t size, uint flags, void* raw_p, size_t raw_size, MEM_DTOR dtor, uintptr_t ctx, void* owner)
{
if(!p || !size)
WARN_RETURN(ERR::INVALID_PARAM);
SCOPED_LOCK;
// we've already allocated that pointer; return its handle and
// increment refcnt.
Handle hm = find_alloc(p);
if(hm > 0)
{
h_add_ref(hm);
return hm;
}
// <p> wasn't allocated via mem_alloc, or we would've found its Handle.
// it is therefore some user-allocated mem and might therefore not have
// a valid <raw_p> set. since that's our search key, we set it to <p>.
if(!raw_p)
raw_p = p;
if(!raw_size)
raw_size = size;
hm = h_alloc(H_Mem, (const char*)p, flags|RES_KEY|RES_NO_CACHE,
p, size, raw_p, raw_size, dtor, ctx, owner);
return hm;
}
/*
LibError mem_assign_user(Handle hm, void* user_p, size_t user_size)
{
H_DEREF(hm, Mem, m);
// security check: must be a subset of the existing buffer
// (otherwise, could reference other buffers / cause mischief)
char* raw_end = (char*)m->raw_p + m->raw_size;
char* user_end = (char*)user_p + user_size;
if(user_p < m->raw_p || user_end > raw_end)
{
debug_warn("mem_assign_user: user buffer not contained in real buffer");
return -1;
}
m->p = user_p;
m->size = user_size;
return INFO::OK;
}
*/
// implementation note: does not currently take a lock; all the
// heavy-lifting happens inside mem_wrap.
void* mem_alloc(size_t size, const size_t align, uint flags, Handle* phm)
{
if(phm)
*phm = ERR::NO_MEM;
#ifdef NDEBUG
void* owner = 0;
#else
void* owner = debug_get_nth_caller(1, 0);
#endif
// note: this is legitimate. vfs_load on 0-length files must return
// a valid and unique pointer to an (at least) 0-length buffer.
if(size == 0)
{
debug_printf("MEM 0 byte alloc\n");
size = 1;
}
void* raw_p;
const size_t raw_size = size + align-1;
uintptr_t ctx;
MEM_DTOR dtor;
// if(scope == RES_TEMP)
// {
// raw_p = pool_alloc(raw_size, ctx);
// dtor = pool_free;
// }
// else
{
raw_p = heap_alloc(raw_size, ctx);
dtor = heap_free;
}
if(!raw_p)
return 0;
void* p = (void*)round_up((uintptr_t)raw_p, align);
//debug_printf("MEMWRAP p=%p size=%x raw_p=%p raw_size=%x owner=%p\n", p, size, raw_p, raw_size, owner);
Handle hm = mem_wrap(p, size, flags, raw_p, raw_size, dtor, ctx, owner);
if(!hm) // failed to allocate a handle
{
debug_warn("mem_wrap failed");
dtor(p, size, ctx);
return 0;
}
// check if pointer was already allocated?
// caller is asking for the handle
// (freeing the memory via handle is faster than mem_free, because
// we wouldn't have to scan all handles looking for the pointer)
if(phm)
*phm = hm;
if(flags & MEM_ZERO)
memset(p, 0, size);
return p;
}
void* mem_get_ptr(Handle hm, size_t* user_size /* = 0 */)
{
SCOPED_LOCK;
Mem* m = H_USER_DATA(hm, Mem);
if(!m)
{
if(user_size)
*user_size = 0;
return 0;
}
debug_assert((!m->p || m->size) && "mem_get_ptr: mem corrupted (p valid =/=> size > 0)");
if(user_size)
*user_size = m->size;
return m->p;
}
LibError mem_get(Handle hm, u8** pp, size_t* psize)
{
SCOPED_LOCK;
H_DEREF(hm, Mem, m);
if(pp)
*pp = (u8*)m->p;
if(psize)
*psize = m->size;
// leave hm locked
return INFO::OK;
}
/*
ssize_t mem_size(void* p)
{
SCOPED_LOCK;
Handle hm = find_alloc(p);
H_DEREF(hm, Mem, m);
return (ssize_t)m->size;
}
*/
// exception to normal resource shutdown: must not be called before
// h_mgr_shutdown! (this is because h_mgr calls us to free memory, which
// requires the pointer -> Handle index still be in place)
void mem_shutdown()
{
// ptr2h_wrapper is currently freed at NLSO dtor time.
// if that's a problem, add a shutdown() method to OverrunProtector.
}