1
0
forked from 0ad/0ad
0ad/source/simulation/TerritoryManager.cpp
Ykkrosh ee3243ff92 # Fixes for simulation speed in scenario edtior. Various code cleanups.
Game, Simulation, etc: Separated 'update' and 'interpolate', and made
'update' return whether it's going fast enough (so callers can decide to
do more updates per render). Changed some time variables to 'double' so
they have enough precision in long games.
Atlas: Added "Fast" playback button. Made simulation sometimes go at
real-time speed, if it's just slightly too slow at rendering.
VertexBuffer: Removed some non-useful glGetError calls.
Entity: Commented out redundant Tick code. Fixed syntax error in
disabled code that confused the IDE.
Aura: Changed string code again, to simply use ASCII instead of UTF-16.
(SpiderMonkey seems to handle it just as efficiently, for small
strings.)
Misc: Some more minor header-file cleanup.
SVN log: Added feed link.

This was SVN commit r4807.
2007-01-24 20:17:28 +00:00

352 lines
10 KiB
C++

#include "precompiled.h"
#include "TerritoryManager.h"
#include "graphics/Frustum.h"
#include "graphics/Camera.h"
#include "graphics/GameView.h"
#include "graphics/Model.h"
#include "graphics/Terrain.h"
#include "graphics/Unit.h"
#include "lib/allocators.h"
#include "lib/ogl.h"
#include "lib/timer.h"
#include "maths/Bound.h"
#include "maths/MathUtil.h"
#include "ps/Game.h"
#include "ps/Player.h"
#include "ps/Profile.h"
#include "simulation/Entity.h"
#include "simulation/EntityManager.h"
#include "simulation/EntityManager.h"
#include "simulation/EntityTemplate.h"
#include "simulation/LOSManager.h"
CTerritoryManager::CTerritoryManager()
{
m_TerritoryMatrix = 0;
m_DelayedRecalculate = false;
}
CTerritoryManager::~CTerritoryManager()
{
if(m_TerritoryMatrix)
{
matrix_free( (void**) m_TerritoryMatrix );
m_TerritoryMatrix = 0;
}
for( size_t i=0; i<m_Territories.size(); i++)
delete m_Territories[i];
m_Territories.clear();
}
void CTerritoryManager::Initialize()
{
CTerrain* terrain = g_Game->GetWorld()->GetTerrain();
m_TilesPerSide = terrain->GetVerticesPerSide() - 1;
m_TerritoryMatrix = (CTerritory***) matrix_alloc( m_TilesPerSide, m_TilesPerSide, sizeof(CTerritory*) );
Recalculate();
}
void CTerritoryManager::Recalculate()
{
// Delete any territories created last time we called Recalculate()
for( size_t i=0; i<m_Territories.size(); i++)
{
if( m_Territories[i]->centre )
m_Territories[i]->centre->m_associatedTerritory = 0;
delete m_Territories[i];
}
m_Territories.clear();
// First, find all the units that are territory centres
std::vector<CEntity*> centres;
std::vector<CEntity*> entities;
g_EntityManager.GetExtant(entities);
for( size_t i=0; i<entities.size(); i++ )
{
if( !entities[i]->entf_get(ENTF_DESTROYED) && entities[i]->m_base->m_isTerritoryCentre )
centres.push_back(entities[i]);
}
int mapSize = m_TilesPerSide * CELL_SIZE;
// If there aren't any centre objects, create one big Gaia territory which spans the whole map
if( centres.empty() )
{
std::vector<CVector2D> boundary;
boundary.push_back( CVector2D(0, 0) );
boundary.push_back( CVector2D(0, mapSize) );
boundary.push_back( CVector2D(mapSize, mapSize) );
boundary.push_back( CVector2D(mapSize, 0) );
CTerritory* ter = new CTerritory( g_Game->GetPlayer(0), HEntity(), boundary );
m_Territories.push_back(ter);
for( uint x=0; x<m_TilesPerSide; x++ )
{
for( uint z=0; z<m_TilesPerSide; z++ )
{
m_TerritoryMatrix[x][z] = ter;
}
}
}
else
{
// For each centre object, create a territory
for( size_t i=0; i<centres.size(); i++ )
{
std::vector<CVector2D> boundary;
CalculateBoundary( centres, i, boundary );
CTerritory* ter = new CTerritory( centres[i]->GetPlayer(), centres[i]->me, boundary );
centres[i]->m_associatedTerritory = ter;
m_Territories.push_back(ter);
}
// For each tile, match it to the closest centre object to it.
// TODO: Optimize this, for example by intersecting scanlines with the Voronoi polygons.
for( uint x=0; x<m_TilesPerSide; x++ )
{
for( uint z=0; z<m_TilesPerSide; z++ )
{
CVector2D tileLoc( (x+0.5f) * CELL_SIZE, (z+0.5f) * CELL_SIZE );
float bestSquareDist = 1e20f;
for( size_t i=0; i<centres.size(); i++ )
{
CVector2D centreLoc( centres[i]->m_position.X, centres[i]->m_position.Z );
float squareDist = (centreLoc - tileLoc).length2();
if( squareDist < bestSquareDist )
{
bestSquareDist = squareDist;
m_TerritoryMatrix[x][z] = m_Territories[i];
}
}
}
}
}
}
void CTerritoryManager::DelayedRecalculate()
{
// This is useful particularly for Atlas, which wants to recalculate
// the boundaries as you move an object around but which doesn't want
// to waste time recalculating multiple times per frame
m_DelayedRecalculate = true;
}
CTerritory* CTerritoryManager::GetTerritory(int x, int z)
{
debug_assert( (uint) x < m_TilesPerSide && (uint) z < m_TilesPerSide );
return m_TerritoryMatrix[x][z];
}
CTerritory* CTerritoryManager::GetTerritory(float x, float z)
{
int ix, iz;
CTerrain::CalcFromPosition(x, z, ix, iz);
return GetTerritory(ix, iz);
}
// Calculate the boundary points of a given territory into the given vector
void CTerritoryManager::CalculateBoundary( std::vector<CEntity*>& centres, size_t myIndex, std::vector<CVector2D>& boundary )
{
// Start with a boundary equal to the whole map
int mapSize = m_TilesPerSide * CELL_SIZE;
boundary.push_back( CVector2D(0, 0) );
boundary.push_back( CVector2D(0, mapSize) );
boundary.push_back( CVector2D(mapSize, mapSize) );
boundary.push_back( CVector2D(mapSize, 0) );
// Clip this polygon against the perpendicular bisector between this centre and each other territory centre
CVector2D myPos( centres[myIndex]->m_position.X, centres[myIndex]->m_position.Z );
for( size_t i=0; i<centres.size(); i++ )
{
if( i != myIndex )
{
CVector2D itsPos( centres[i]->m_position.X, centres[i]->m_position.Z );
CVector2D midpoint = (myPos + itsPos) / 2.0f;
CVector2D normal = itsPos - myPos;
// Clip our polygon to the negative side of the half-space with normal "normal"
// containing point "midpoint", i.e. the side of the perpendicular bisector
// between myPos and itsPos that contains myPos. We do this by tracing around
// the polygon looking at each vertex to decide which ones to add as follows:
// - If a vertex is inside the half-space, take it.
// - If a vertex is inside but the next one is outside, also take the
// intersection of that edge with the perpendicular bisector.
// - If a vertex is outside but the next one is inside, take the
// intersection of that edge with the perpendicular bisector.
std::vector<CVector2D> newBoundary;
for( size_t j=0; j<boundary.size(); j++ )
{
CVector2D& pos = boundary[j];
float dot = (pos - midpoint).dot(normal);
bool inside = dot < 0.0f;
size_t nextJ = (j+1) % boundary.size(); // index of next point
CVector2D& nextPos = boundary[nextJ];
float nextDot = (nextPos - midpoint).dot(normal);
bool nextInside = nextDot < 0.0f;
if( inside )
{
newBoundary.push_back( pos );
if( !nextInside )
{
// Also add intersection of this line segment and the bisector
float t = nextDot / (-dot + nextDot);
newBoundary.push_back( pos * t + nextPos * (1.0f - t) );
}
}
else if( nextInside )
{
// Add intersection of this line segment and the bisector
float t = nextDot / (-dot + nextDot);
newBoundary.push_back( pos * t + nextPos * (1.0f - t) );
}
}
boundary = newBoundary;
}
}
}
void CTerritoryManager::renderTerritories()
{
PROFILE( "render territories" );
if (m_DelayedRecalculate)
{
Recalculate();
m_DelayedRecalculate = false;
}
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);
glLineWidth(1.5f);
CLOSManager* losMgr = g_Game->GetWorld()->GetLOSManager();
CFrustum frustum = g_Game->GetView()->GetCamera()->GetFrustum();
std::vector<CTerritory*>::iterator terr=m_Territories.begin();
for ( ; terr != m_Territories.end(); ++terr )
{
float r, g, b;
if ( (*terr)->owner->GetPlayerID() == 0 )
{
// Use a dark gray for Gaia territories since white looks a bit weird
//glColor3f( 0.65f, 0.65f, 0.65f );
r = g = b = 0.65f;
}
else
{
// Use the player's colour
const SPlayerColour& col = (*terr)->owner->GetColour();
//glColor3f(col.r, col.g, col.b);
r = col.r;
g = col.g;
b = col.b;
}
for ( size_t edge=0; edge < (*terr)->boundary.size(); edge++ )
{
const std::vector<CVector3D>& coords = (*terr)->GetEdgeCoords(edge);
CVector3D start = coords[0];
CVector3D end = coords[coords.size() - 1];
if ( !frustum.DoesSegmentIntersect(start, end) )
continue;
glBegin( GL_LINE_STRIP );
for( size_t i=0; i<coords.size(); i++ )
{
float losScale = 0.0f;
ELOSStatus los = losMgr->GetStatus(coords[i].X, coords[i].Z, g_Game->GetLocalPlayer());
if( los & LOS_VISIBLE ) losScale = 1.0f;
else if( los & LOS_EXPLORED ) losScale = 0.7f;
glColor3f( r*losScale, g*losScale, b*losScale );
glVertex3f( coords[i].X, coords[i].Y, coords[i].Z );
}
glEnd();
}
}
glEnable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glDisable(GL_LINE_SMOOTH);
glLineWidth(1.0f);
glColor4f(1,1,1,1);
}
const std::vector<CVector3D>& CTerritory::GetEdgeCoords(size_t edge)
{
if ( edgeCoords.size() == 0 )
{
// Edge coords have not been calculated - calculate them now
edgeCoords.resize( boundary.size() );
const CTerrain* pTerrain = g_Game->GetWorld()->GetTerrain();
// Tweak the boundary to shift all edges "inwards" by 0.3 units towards the territory's centre,
// so that boundaries for adjacent territories don't overlap
std::vector<CVector2D> tweakedBoundary = boundary;
for ( size_t i=0; i<boundary.size(); i++ )
{
size_t prevI = (i+boundary.size()-1) % boundary.size();
size_t nextI = (i+1) % boundary.size();
// Figure out the direction perpendicular to each of the two edges that meet at this point.
CVector2D dir1 = (boundary[i]-boundary[prevI]).beta().normalize();
CVector2D dir2 = (boundary[nextI]-boundary[i]).beta().normalize();
// If you draw a picture of what our point looks like and what the two lines 0.3 units
// away from it look like, and draw a line between our point and that one as well as
// drop perpendicular lines from it to the original edges, you get this formula for the
// length and direction we have to be moved.
float angle = acosf(dir1.dot(dir2));
tweakedBoundary[i] += (dir1 + dir2).normalize() * 0.3f / cosf(angle/2);
}
// Calculate the heights at points TERRITORY_PRECISION_STEP apart on our edges
// and store the final vertices in edgeCoords.
for ( size_t e=0; e<boundary.size(); e++ )
{
std::vector<CVector3D>& coords = edgeCoords[e];
CVector2D start = tweakedBoundary[e];
CVector2D end = tweakedBoundary[(e+1) % boundary.size()];
float iterf = (end - start).length() / TERRITORY_PRECISION_STEP;
for ( float i=0; i < iterf; i += TERRITORY_PRECISION_STEP )
{
CVector2D pos = Interpolate( start, end, i/iterf );
coords.push_back( CVector3D( pos.x, pTerrain->getExactGroundLevel(pos)+0.25f, pos.y ) );
}
coords.push_back( CVector3D( end.x, pTerrain->getExactGroundLevel(end)+0.25f, end.y ) );
}
}
return edgeCoords[edge];
}
void CTerritory::ClearEdgeCache()
{
edgeCoords.clear();
edgeCoords.resize( boundary.size() );
}