1
0
forked from 0ad/0ad
0ad/source/graphics/Camera.cpp
Ykkrosh b1b96a89d6 Fix culling for shadows and reflections.
Previously we had a single culling frustum based on the main camera, and
any object outside the frustum would never get rendered, even if it
should actually contribute to shadows or reflections/refractions. This
caused ugly pop-in effects in the shadows and reflections while
scrolling.

Extend the renderer to support multiple cull groups, each with a
separate frustum and with separate lists of submitted objects, so that
shadows and reflections will render the correctly culled sets of
objects.

Update the shadow map generation to compute the (hopefully) correct
bounds and matrices for this new scheme.

Include terrain patches in the shadow bounds, so hills can cast shadows
correctly.

Remove the code that tried to render objects slightly outside the camera
frustum in order to reduce the pop-in effect, since that was a
workaround for the lack of a proper fix.

Remove the model/patch filtering code, which was used to cull objects
that were in the normal camera frustum but should be excluded from
reflections/refractions, since that's redundant now too.

Inline DistanceToPlane to save a few hundred usecs per frame inside
CCmpUnitRenderer::RenderSubmit.

Fixes #504, #579.

This was SVN commit r15445.
2014-06-25 01:11:10 +00:00

439 lines
13 KiB
C++

/* Copyright (C) 2010 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* CCamera holds a view and a projection matrix. It also has a frustum
* which can be used to cull objects for rendering.
*/
#include "precompiled.h"
#include "Camera.h"
#include "graphics/HFTracer.h"
#include "graphics/Terrain.h"
#include "lib/ogl.h"
#include "maths/MathUtil.h"
#include "maths/Vector4D.h"
#include "ps/Game.h"
#include "ps/World.h"
#include "renderer/Renderer.h"
#include "renderer/WaterManager.h"
CCamera::CCamera()
{
// set viewport to something anything should handle, but should be initialised
// to window size before use
m_ViewPort.m_X = 0;
m_ViewPort.m_Y = 0;
m_ViewPort.m_Width = 800;
m_ViewPort.m_Height = 600;
}
CCamera::~CCamera()
{
}
void CCamera::SetProjection(float nearp, float farp, float fov)
{
m_NearPlane = nearp;
m_FarPlane = farp;
m_FOV = fov;
float aspect = (float)m_ViewPort.m_Width/(float)m_ViewPort.m_Height;
float f = 1.0f/tanf(m_FOV/2);
m_ProjMat.SetZero ();
m_ProjMat._11 = f/aspect;
m_ProjMat._22 = f;
m_ProjMat._33 = -(m_FarPlane+m_NearPlane)/(m_NearPlane-m_FarPlane);
m_ProjMat._34 = 2*m_FarPlane*m_NearPlane/(m_NearPlane-m_FarPlane);
m_ProjMat._43 = 1.0f;
}
void CCamera::SetProjectionTile(int tiles, int tile_x, int tile_y)
{
float aspect = (float)m_ViewPort.m_Width/(float)m_ViewPort.m_Height;
float f = 1.0f/tanf(m_FOV/2);
m_ProjMat._11 = tiles*f/aspect;
m_ProjMat._22 = tiles*f;
m_ProjMat._13 = -(1-tiles + 2*tile_x);
m_ProjMat._23 = -(1-tiles + 2*tile_y);
}
//Updates the frustum planes. Should be called
//everytime the view or projection matrices are
//altered.
void CCamera::UpdateFrustum(const CBoundingBoxAligned& scissor)
{
CMatrix3D MatFinal;
CMatrix3D MatView;
m_Orientation.GetInverse(MatView);
MatFinal = m_ProjMat * MatView;
m_ViewFrustum.SetNumPlanes(6);
// get the RIGHT plane
m_ViewFrustum.m_aPlanes[0].m_Norm.X = scissor[1].X*MatFinal._41 - MatFinal._11;
m_ViewFrustum.m_aPlanes[0].m_Norm.Y = scissor[1].X*MatFinal._42 - MatFinal._12;
m_ViewFrustum.m_aPlanes[0].m_Norm.Z = scissor[1].X*MatFinal._43 - MatFinal._13;
m_ViewFrustum.m_aPlanes[0].m_Dist = scissor[1].X*MatFinal._44 - MatFinal._14;
// get the LEFT plane
m_ViewFrustum.m_aPlanes[1].m_Norm.X = -scissor[0].X*MatFinal._41 + MatFinal._11;
m_ViewFrustum.m_aPlanes[1].m_Norm.Y = -scissor[0].X*MatFinal._42 + MatFinal._12;
m_ViewFrustum.m_aPlanes[1].m_Norm.Z = -scissor[0].X*MatFinal._43 + MatFinal._13;
m_ViewFrustum.m_aPlanes[1].m_Dist = -scissor[0].X*MatFinal._44 + MatFinal._14;
// get the BOTTOM plane
m_ViewFrustum.m_aPlanes[2].m_Norm.X = -scissor[0].Y*MatFinal._41 + MatFinal._21;
m_ViewFrustum.m_aPlanes[2].m_Norm.Y = -scissor[0].Y*MatFinal._42 + MatFinal._22;
m_ViewFrustum.m_aPlanes[2].m_Norm.Z = -scissor[0].Y*MatFinal._43 + MatFinal._23;
m_ViewFrustum.m_aPlanes[2].m_Dist = -scissor[0].Y*MatFinal._44 + MatFinal._24;
// get the TOP plane
m_ViewFrustum.m_aPlanes[3].m_Norm.X = scissor[1].Y*MatFinal._41 - MatFinal._21;
m_ViewFrustum.m_aPlanes[3].m_Norm.Y = scissor[1].Y*MatFinal._42 - MatFinal._22;
m_ViewFrustum.m_aPlanes[3].m_Norm.Z = scissor[1].Y*MatFinal._43 - MatFinal._23;
m_ViewFrustum.m_aPlanes[3].m_Dist = scissor[1].Y*MatFinal._44 - MatFinal._24;
// get the FAR plane
m_ViewFrustum.m_aPlanes[4].m_Norm.X = scissor[1].Z*MatFinal._41 - MatFinal._31;
m_ViewFrustum.m_aPlanes[4].m_Norm.Y = scissor[1].Z*MatFinal._42 - MatFinal._32;
m_ViewFrustum.m_aPlanes[4].m_Norm.Z = scissor[1].Z*MatFinal._43 - MatFinal._33;
m_ViewFrustum.m_aPlanes[4].m_Dist = scissor[1].Z*MatFinal._44 - MatFinal._34;
// get the NEAR plane
m_ViewFrustum.m_aPlanes[5].m_Norm.X = -scissor[0].Z*MatFinal._41 + MatFinal._31;
m_ViewFrustum.m_aPlanes[5].m_Norm.Y = -scissor[0].Z*MatFinal._42 + MatFinal._32;
m_ViewFrustum.m_aPlanes[5].m_Norm.Z = -scissor[0].Z*MatFinal._43 + MatFinal._33;
m_ViewFrustum.m_aPlanes[5].m_Dist = -scissor[0].Z*MatFinal._44 + MatFinal._34;
for (size_t i = 0; i < 6; ++i)
m_ViewFrustum.m_aPlanes[i].Normalize();
}
void CCamera::ClipFrustum(const CPlane& clipPlane)
{
CPlane normClipPlane = clipPlane;
normClipPlane.Normalize();
m_ViewFrustum.AddPlane(normClipPlane);
}
void CCamera::SetViewPort(const SViewPort& viewport)
{
m_ViewPort.m_X = viewport.m_X;
m_ViewPort.m_Y = viewport.m_Y;
m_ViewPort.m_Width = viewport.m_Width;
m_ViewPort.m_Height = viewport.m_Height;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
// GetCameraPlanePoints: return four points in camera space at given distance from camera
void CCamera::GetCameraPlanePoints(float dist, CVector3D pts[4]) const
{
float aspect = float(m_ViewPort.m_Width)/float(m_ViewPort.m_Height);
float x = dist*aspect*tanf(m_FOV*0.5f);
float y = dist*tanf(m_FOV*0.5f);
pts[0].X = -x;
pts[0].Y = -y;
pts[0].Z = dist;
pts[1].X = x;
pts[1].Y = -y;
pts[1].Z = dist;
pts[2].X = x;
pts[2].Y = y;
pts[2].Z = dist;
pts[3].X = -x;
pts[3].Y = y;
pts[3].Z = dist;
}
void CCamera::BuildCameraRay(int px, int py, CVector3D& origin, CVector3D& dir) const
{
CVector3D cPts[4];
GetCameraPlanePoints(m_FarPlane, cPts);
// transform to world space
CVector3D wPts[4];
for (int i = 0; i < 4; i++)
wPts[i] = m_Orientation.Transform(cPts[i]);
// get world space position of mouse point
float dx = (float)px / (float)g_Renderer.GetWidth();
float dz = 1 - (float)py / (float)g_Renderer.GetHeight();
CVector3D vdx = wPts[1] - wPts[0];
CVector3D vdz = wPts[3] - wPts[0];
CVector3D pt = wPts[0] + (vdx * dx) + (vdz * dz);
// copy origin
origin = m_Orientation.GetTranslation();
// build direction
dir = pt - origin;
dir.Normalize();
}
void CCamera::GetScreenCoordinates(const CVector3D& world, float& x, float& y) const
{
CMatrix3D transform = m_ProjMat * m_Orientation.GetInverse();
CVector4D screenspace = transform.Transform(CVector4D(world.X, world.Y, world.Z, 1.0f));
x = screenspace.X / screenspace.W;
y = screenspace.Y / screenspace.W;
x = (x + 1) * 0.5f * g_Renderer.GetWidth();
y = (1 - y) * 0.5f * g_Renderer.GetHeight();
}
CVector3D CCamera::GetWorldCoordinates(int px, int py, bool aboveWater) const
{
CHFTracer tracer(g_Game->GetWorld()->GetTerrain());
int x, z;
CVector3D origin, dir, delta, terrainPoint, waterPoint;
BuildCameraRay(px, py, origin, dir);
bool gotTerrain = tracer.RayIntersect(origin, dir, x, z, terrainPoint);
if (!aboveWater)
{
if (gotTerrain)
return terrainPoint;
// Off the edge of the world?
// Work out where it /would/ hit, if the map were extended out to infinity with average height.
return GetWorldCoordinates(px, py, 50.0f);
}
CPlane plane;
plane.Set(CVector3D(0.f, 1.f, 0.f), // upwards normal
CVector3D(0.f, g_Renderer.GetWaterManager()->m_WaterHeight, 0.f)); // passes through water plane
bool gotWater = plane.FindRayIntersection( origin, dir, &waterPoint );
// Clamp the water intersection to within the map's bounds, so that
// we'll always return a valid position on the map
ssize_t mapSize = g_Game->GetWorld()->GetTerrain()->GetVerticesPerSide();
if (gotWater)
{
waterPoint.X = clamp(waterPoint.X, 0.f, (float)((mapSize-1)*TERRAIN_TILE_SIZE));
waterPoint.Z = clamp(waterPoint.Z, 0.f, (float)((mapSize-1)*TERRAIN_TILE_SIZE));
}
if (gotTerrain)
{
if (gotWater)
{
// Intersecting both heightmap and water plane; choose the closest of those
if ((origin - terrainPoint).LengthSquared() < (origin - waterPoint).LengthSquared())
return terrainPoint;
else
return waterPoint;
}
else
{
// Intersecting heightmap but parallel to water plane
return terrainPoint;
}
}
else
{
if (gotWater)
{
// Only intersecting water plane
return waterPoint;
}
else
{
// Not intersecting terrain or water; just return 0,0,0.
return CVector3D(0.f, 0.f, 0.f);
}
}
}
CVector3D CCamera::GetWorldCoordinates(int px, int py, float h) const
{
CPlane plane;
plane.Set(CVector3D(0.f, 1.f, 0.f), CVector3D(0.f, h, 0.f)); // upwards normal, passes through h
CVector3D origin, dir, delta, currentTarget;
BuildCameraRay(px, py, origin, dir);
if (plane.FindRayIntersection(origin, dir, &currentTarget))
return currentTarget;
// No intersection with the infinite plane - nothing sensible can be returned,
// so just choose an arbitrary point on the plane
return CVector3D(0.f, h, 0.f);
}
CVector3D CCamera::GetFocus() const
{
// Basically the same as GetWorldCoordinates
CHFTracer tracer(g_Game->GetWorld()->GetTerrain());
int x, z;
CVector3D origin, dir, delta, terrainPoint, waterPoint;
origin = m_Orientation.GetTranslation();
dir = m_Orientation.GetIn();
bool gotTerrain = tracer.RayIntersect(origin, dir, x, z, terrainPoint);
CPlane plane;
plane.Set(CVector3D(0.f, 1.f, 0.f), // upwards normal
CVector3D(0.f, g_Renderer.GetWaterManager()->m_WaterHeight, 0.f)); // passes through water plane
bool gotWater = plane.FindRayIntersection( origin, dir, &waterPoint );
// Clamp the water intersection to within the map's bounds, so that
// we'll always return a valid position on the map
ssize_t mapSize = g_Game->GetWorld()->GetTerrain()->GetVerticesPerSide();
if (gotWater)
{
waterPoint.X = clamp(waterPoint.X, 0.f, (float)((mapSize-1)*TERRAIN_TILE_SIZE));
waterPoint.Z = clamp(waterPoint.Z, 0.f, (float)((mapSize-1)*TERRAIN_TILE_SIZE));
}
if (gotTerrain)
{
if (gotWater)
{
// Intersecting both heightmap and water plane; choose the closest of those
if ((origin - terrainPoint).LengthSquared() < (origin - waterPoint).LengthSquared())
return terrainPoint;
else
return waterPoint;
}
else
{
// Intersecting heightmap but parallel to water plane
return terrainPoint;
}
}
else
{
if (gotWater)
{
// Only intersecting water plane
return waterPoint;
}
else
{
// Not intersecting terrain or water; just return 0,0,0.
return CVector3D(0.f, 0.f, 0.f);
}
}
}
void CCamera::LookAt(const CVector3D& camera, const CVector3D& target, const CVector3D& up)
{
CVector3D delta = target - camera;
LookAlong(camera, delta, up);
}
void CCamera::LookAlong(CVector3D camera, CVector3D orientation, CVector3D up)
{
orientation.Normalize();
up.Normalize();
CVector3D s = orientation.Cross(up);
m_Orientation._11 = -s.X; m_Orientation._12 = up.X; m_Orientation._13 = orientation.X; m_Orientation._14 = camera.X;
m_Orientation._21 = -s.Y; m_Orientation._22 = up.Y; m_Orientation._23 = orientation.Y; m_Orientation._24 = camera.Y;
m_Orientation._31 = -s.Z; m_Orientation._32 = up.Z; m_Orientation._33 = orientation.Z; m_Orientation._34 = camera.Z;
m_Orientation._41 = 0.0f; m_Orientation._42 = 0.0f; m_Orientation._43 = 0.0f; m_Orientation._44 = 1.0f;
}
///////////////////////////////////////////////////////////////////////////////////
// Render the camera's frustum
void CCamera::Render(int intermediates) const
{
#if CONFIG2_GLES
#warning TODO: implement camera frustum for GLES
#else
CVector3D nearPoints[4];
CVector3D farPoints[4];
GetCameraPlanePoints(m_NearPlane, nearPoints);
GetCameraPlanePoints(m_FarPlane, farPoints);
for(int i = 0; i < 4; i++)
{
nearPoints[i] = m_Orientation.Transform(nearPoints[i]);
farPoints[i] = m_Orientation.Transform(farPoints[i]);
}
// near plane
glBegin(GL_POLYGON);
glVertex3fv(&nearPoints[0].X);
glVertex3fv(&nearPoints[1].X);
glVertex3fv(&nearPoints[2].X);
glVertex3fv(&nearPoints[3].X);
glEnd();
// far plane
glBegin(GL_POLYGON);
glVertex3fv(&farPoints[0].X);
glVertex3fv(&farPoints[1].X);
glVertex3fv(&farPoints[2].X);
glVertex3fv(&farPoints[3].X);
glEnd();
// connection lines
glBegin(GL_QUAD_STRIP);
glVertex3fv(&nearPoints[0].X);
glVertex3fv(&farPoints[0].X);
glVertex3fv(&nearPoints[1].X);
glVertex3fv(&farPoints[1].X);
glVertex3fv(&nearPoints[2].X);
glVertex3fv(&farPoints[2].X);
glVertex3fv(&nearPoints[3].X);
glVertex3fv(&farPoints[3].X);
glVertex3fv(&nearPoints[0].X);
glVertex3fv(&farPoints[0].X);
glEnd();
// intermediate planes
CVector3D intermediatePoints[4];
for(int i = 0; i < intermediates; ++i)
{
float t = (i+1.0)/(intermediates+1.0);
for(int j = 0; j < 4; ++j)
intermediatePoints[j] = nearPoints[j]*t + farPoints[j]*(1.0-t);
glBegin(GL_POLYGON);
glVertex3fv(&intermediatePoints[0].X);
glVertex3fv(&intermediatePoints[1].X);
glVertex3fv(&intermediatePoints[2].X);
glVertex3fv(&intermediatePoints[3].X);
glEnd();
}
#endif
}