1
0
forked from 0ad/0ad
0ad/source/renderer/PlayerRenderer.cpp
janwas c0ed950657 had to remove uint and ulong from lib/types.h due to conflict with other library.
this snowballed into a massive search+destroy of the hodgepodge of
mostly equivalent types we had in use (int, uint, unsigned, unsigned
int, i32, u32, ulong, uintN).

it is more efficient to use 64-bit types in 64-bit mode, so the
preferred default is size_t (for anything remotely resembling a size or
index). tile coordinates are ssize_t to allow more efficient conversion
to/from floating point. flags are int because we almost never need more
than 15 distinct bits, bit test/set is not slower and int is fastest to
type. finally, some data that is pretty much directly passed to OpenGL
is now typed accordingly.

after several hours, the code now requires fewer casts and less
guesswork.

other changes:
- unit and player IDs now have an "invalid id" constant in the
respective class to avoid casting and -1
- fix some endian/64-bit bugs in the map (un)packing. added a
convenience function to write/read a size_t.
- ia32: change CPUID interface to allow passing in ecx (required for
cache topology detection, which I need at work). remove some unneeded
functions from asm, replace with intrinsics where possible.

This was SVN commit r5942.
2008-05-11 18:48:32 +00:00

403 lines
12 KiB
C++

/**
* =========================================================================
* File : PlayerRenderer.cpp
* Project : Pyrogenesis
* Description : Implementation of player colour RenderModifiers.
* =========================================================================
*/
#include "precompiled.h"
#include "renderer/Renderer.h"
#include "renderer/PlayerRenderer.h"
#include "renderer/ShadowMap.h"
#include "graphics/LightEnv.h"
#include "graphics/Model.h"
#include "ps/CLogger.h"
#define LOG_CATEGORY "graphics"
///////////////////////////////////////////////////////////////////////////////////////////////////
// FastPlayerColorRender
FastPlayerColorRender::FastPlayerColorRender()
{
debug_assert(ogl_max_tex_units >= 3);
}
FastPlayerColorRender::~FastPlayerColorRender()
{
}
bool FastPlayerColorRender::IsAvailable()
{
return (ogl_max_tex_units >= 3);
}
int FastPlayerColorRender::BeginPass(int pass)
{
debug_assert(pass == 0);
// Fast player color uses a single pass with three texture environments
// Note: This uses ARB_texture_env_crossbar (which is checked in GameSetup)
//
// We calculate: Result = Color*Texture*(PlayerColor*(1-Texture.a) + 1.0*Texture.a)
// Algebra gives us:
// Result = (1 - ((1 - PlayerColor) * (1 - Texture.a)))*Texture*Color
// TexEnv #0
pglActiveTextureARB(GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_ONE_MINUS_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_ONE_MINUS_SRC_COLOR);
// Don't care about alpha; set it to something harmless
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
// TexEnv #1
pglActiveTextureARB(GL_TEXTURE0+1);
glEnable(GL_TEXTURE_2D);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_ONE_MINUS_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
// Don't care about alpha; set it to something harmless
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
// TexEnv #2
pglActiveTextureARB(GL_TEXTURE0+2);
glEnable(GL_TEXTURE_2D);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
// Don't care about alpha; set it to something harmless
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
pglActiveTextureARB(GL_TEXTURE0);
return STREAM_POS|STREAM_COLOR|STREAM_UV0;
}
bool FastPlayerColorRender::EndPass(int UNUSED(pass))
{
// Restore state
pglActiveTextureARB(GL_TEXTURE1);
glDisable(GL_TEXTURE_2D);
pglActiveTextureARB(GL_TEXTURE2);
glDisable(GL_TEXTURE_2D);
pglActiveTextureARB(GL_TEXTURE0);
return true;
}
void FastPlayerColorRender::PrepareTexture(int UNUSED(pass), CTexture* texture)
{
g_Renderer.SetTexture(2, texture);
g_Renderer.SetTexture(1, texture);
g_Renderer.SetTexture(0, texture);
}
void FastPlayerColorRender::PrepareModel(int UNUSED(pass), CModel* model)
{
// Get the player color
SMaterialColor colour = model->GetMaterial().GetPlayerColor();
float* color = &colour.r; // because it's stored RGBA
// Set the texture environment color the player color
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, color);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// SlowPlayerColorRender
SlowPlayerColorRender::SlowPlayerColorRender()
{
}
SlowPlayerColorRender::~SlowPlayerColorRender()
{
}
int SlowPlayerColorRender::BeginPass(int pass)
{
// We calculate: Result = (Color*Texture)*Texture.a + (Color*Texture*PlayerColor)*(1-Texture.a)
// Modulation is done via texture environments, the final interpolation is done via blending
if (pass == 0)
{
// TexEnv #0
pglActiveTextureARB(GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
// Don't care about alpha; set it to something harmless
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
// Render it!
return STREAM_POS|STREAM_COLOR|STREAM_UV0;
}
else
{
// TexEnv #0
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
// Alpha = Opacity of non-player colored layer
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
// TexEnv #1
pglActiveTextureARB(GL_TEXTURE1);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
// Pass alpha unchanged
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
pglActiveTextureARB(GL_TEXTURE0);
// Setup blending
glEnable(GL_BLEND);
glBlendFunc(GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_LESS, 1.0);
glDepthMask(0);
// Render it!
return STREAM_POS|STREAM_COLOR|STREAM_UV0;
}
}
bool SlowPlayerColorRender::EndPass(int pass)
{
if (pass == 0)
return false; // need two passes
// Restore state
pglActiveTextureARB(GL_TEXTURE1);
glDisable(GL_TEXTURE_2D);
pglActiveTextureARB(GL_TEXTURE0);
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glDepthMask(1);
return true;
}
void SlowPlayerColorRender::PrepareTexture(int pass, CTexture* texture)
{
if (pass == 1)
g_Renderer.SetTexture(1, texture);
g_Renderer.SetTexture(0, texture);
}
void SlowPlayerColorRender::PrepareModel(int pass, CModel* model)
{
if (pass == 1)
{
// Get the player color
SMaterialColor colour = model->GetMaterial().GetPlayerColor();
float* color = &colour.r; // because it's stored RGBA
// Set the texture environment color the player color
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, color);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// LitPlayerColorRender
LitPlayerColorRender::LitPlayerColorRender()
{
}
LitPlayerColorRender::~LitPlayerColorRender()
{
}
int LitPlayerColorRender::BeginPass(int pass)
{
debug_assert(GetShadowMap() && GetShadowMap()->GetUseDepthTexture());
if (pass == 0)
{
// First pass: Lay down the material color
// We calculate:
// Material = Texture*(PlayerColor*(1.0-Texture.a) + 1.0*Texture.a))
// = (1 - ((1 - PlayerColor) * (1 - Texture.a)))*Texture
// Incoming Color holds the player color
// Texture 0 holds the model's texture
// TexEnv #0
pglActiveTextureARB(GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_ONE_MINUS_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_ONE_MINUS_SRC_COLOR);
// Don't care about alpha; set it to something harmless
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
// TexEnv #1
pglActiveTextureARB(GL_TEXTURE0+1);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, GetShadowMap()->GetTexture());
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_ONE_MINUS_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
// Don't care about alpha; set it to something harmless
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
pglActiveTextureARB(GL_TEXTURE0);
return STREAM_POS|STREAM_UV0;
}
else
{
// Second pass: Multiply with lighting
//
// We calculate:
// Lighting = Ambient + Diffuse * Shadow
// and modulate with frame buffer contents
//
// Incoming color is diffuse
// Texture 1 is the shadow map
// TexEnv #0
pglActiveTextureARB(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, GetShadowMap()->GetTexture());
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_TEXTURE1);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
// TexEnv #1
pglActiveTextureARB(GL_TEXTURE1);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, GetShadowMap()->GetTexture());
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_ADD);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, &GetLightEnv()->m_UnitsAmbientColor.X);
pglActiveTextureARB(GL_TEXTURE0);
// Blending, Z settings
glEnable(GL_BLEND);
glBlendFunc(GL_DST_COLOR, GL_ZERO);
glDepthMask(0);
return STREAM_POS|STREAM_COLOR|STREAM_TEXGENTOUV1;
}
}
bool LitPlayerColorRender::EndPass(int pass)
{
if (pass == 0)
{
return false;
}
else
{
// Restore state
pglActiveTextureARB(GL_TEXTURE1);
glDisable(GL_TEXTURE_2D);
pglActiveTextureARB(GL_TEXTURE0);
glDisable(GL_BLEND);
glDepthMask(1);
return true;
}
}
const CMatrix3D* LitPlayerColorRender::GetTexGenMatrix(int UNUSED(pass))
{
return &GetShadowMap()->GetTextureMatrix();
}
void LitPlayerColorRender::PrepareTexture(int pass, CTexture* texture)
{
if (pass == 0)
g_Renderer.SetTexture(0, texture);
}
void LitPlayerColorRender::PrepareModel(int pass, CModel* model)
{
if (pass == 0)
{
// Get the player color
SMaterialColor colour = model->GetMaterial().GetPlayerColor();
// Send the player color
glColor3f(colour.r, colour.g, colour.b);
}
}