1
0
forked from 0ad/0ad
0ad/source/graphics/Canvas2D.cpp

332 lines
10 KiB
C++
Raw Normal View History

/* Copyright (C) 2022 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "Canvas2D.h"
#include "graphics/Color.h"
#include "graphics/ShaderManager.h"
#include "graphics/TextRenderer.h"
#include "graphics/TextureManager.h"
#include "gui/GUIMatrix.h"
#include "maths/Rect.h"
#include "maths/Vector2D.h"
#include "ps/CStrInternStatic.h"
#include "renderer/Renderer.h"
#include <array>
namespace
{
// Array of 2D elements unrolled into 1D array.
using PlaneArray2D = std::array<float, 12>;
inline void DrawTextureImpl(
Renderer::Backend::GL::CDeviceCommandContext* deviceCommandContext,
const CShaderProgramPtr& shader, const CTexturePtr& texture,
const PlaneArray2D& vertices, PlaneArray2D uvs,
const CColor& multiply, const CColor& add, const float grayscaleFactor)
{
texture->UploadBackendTextureIfNeeded(deviceCommandContext);
shader->BindTexture(str_tex, texture->GetBackendTexture());
for (size_t idx = 0; idx < uvs.size(); idx += 2)
{
if (texture->GetWidth() > 0.0f)
uvs[idx + 0] /= texture->GetWidth();
if (texture->GetHeight() > 0.0f)
uvs[idx + 1] /= texture->GetHeight();
}
shader->Uniform(str_colorAdd, add);
shader->Uniform(str_colorMul, multiply);
shader->Uniform(str_grayscaleFactor, grayscaleFactor);
shader->VertexPointer(2, GL_FLOAT, 0, vertices.data());
shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, 0, uvs.data());
shader->AssertPointersBound();
glDrawArrays(GL_TRIANGLES, 0, vertices.size() / 2);
}
} // anonymous namespace
class CCanvas2D::Impl
{
public:
Impl(Renderer::Backend::GL::CDeviceCommandContext* deviceCommandContext)
: DeviceCommandContext(deviceCommandContext)
{
}
void BindTechIfNeeded()
{
if (Tech)
return;
CShaderDefines defines;
Tech = g_Renderer.GetShaderManager().LoadEffect(str_canvas2d, defines);
ENSURE(Tech);
Tech->BeginPass();
DeviceCommandContext->SetGraphicsPipelineState(
Tech->GetGraphicsPipelineStateDesc());
const CShaderProgramPtr& shader = Tech->GetShader();
shader->Uniform(str_transform, GetDefaultGuiMatrix());
}
void UnbindTech()
{
if (!Tech)
return;
Tech->EndPass();
Tech.reset();
}
Renderer::Backend::GL::CDeviceCommandContext* DeviceCommandContext;
CShaderTechniquePtr Tech;
};
CCanvas2D::CCanvas2D(
Renderer::Backend::GL::CDeviceCommandContext* deviceCommandContext)
: m(std::make_unique<Impl>(deviceCommandContext))
{
}
CCanvas2D::~CCanvas2D()
{
Flush();
}
void CCanvas2D::DrawLine(const std::vector<CVector2D>& points, const float width, const CColor& color)
{
if (points.empty())
return;
// We could reuse the terrain line building, but it uses 3D space instead of
// 2D. So it can be less optimal for a canvas.
// Adding a single pixel line with alpha gradient to reduce the aliasing
// effect.
const float halfWidth = width * 0.5f + 1.0f;
struct PointIndex
{
size_t index;
float length;
CVector2D normal;
};
// Normal for the last index is undefined.
std::vector<PointIndex> pointsIndices;
pointsIndices.reserve(points.size());
pointsIndices.emplace_back(PointIndex{0, 0.0f, CVector2D()});
for (size_t index = 0; index < points.size();)
{
size_t nextIndex = index + 1;
CVector2D direction;
float length = 0.0f;
while (nextIndex < points.size())
{
direction = points[nextIndex] - points[pointsIndices.back().index];
length = direction.Length();
if (length >= halfWidth * 2.0f)
{
direction /= length;
break;
}
++nextIndex;
}
if (nextIndex == points.size())
break;
pointsIndices.back().length = length;
pointsIndices.back().normal = CVector2D(-direction.Y, direction.X);
pointsIndices.emplace_back(PointIndex{nextIndex, 0.0f, CVector2D()});
index = nextIndex;
}
if (pointsIndices.size() <= 1)
return;
std::vector<std::array<CVector2D, 3>> vertices;
std::vector<std::array<CVector2D, 3>> uvs;
std::vector<u16> indices;
const size_t reserveSize = 2 * pointsIndices.size() - 1;
vertices.reserve(reserveSize);
uvs.reserve(reserveSize);
indices.reserve(reserveSize * 12);
auto addVertices = [&vertices, &uvs, &indices, &halfWidth](const CVector2D& p1, const CVector2D& p2)
{
if (!vertices.empty())
{
const u16 lastVertexIndex = static_cast<u16>(vertices.size() * 3 - 1);
ENSURE(lastVertexIndex >= 2);
// First vertical half of the segment.
indices.emplace_back(lastVertexIndex - 2);
indices.emplace_back(lastVertexIndex - 1);
indices.emplace_back(lastVertexIndex + 2);
indices.emplace_back(lastVertexIndex - 2);
indices.emplace_back(lastVertexIndex + 2);
indices.emplace_back(lastVertexIndex + 1);
// Second vertical half of the segment.
indices.emplace_back(lastVertexIndex - 1);
indices.emplace_back(lastVertexIndex);
indices.emplace_back(lastVertexIndex + 3);
indices.emplace_back(lastVertexIndex - 1);
indices.emplace_back(lastVertexIndex + 3);
indices.emplace_back(lastVertexIndex + 2);
}
vertices.emplace_back(std::array<CVector2D, 3>{p1, (p1 + p2) / 2.0f, p2});
uvs.emplace_back(std::array<CVector2D, 3>{
CVector2D(0.0f, 0.0f),
CVector2D(std::max(1.0f, halfWidth - 1.0f), 0.0f),
CVector2D(0.0f, 0.0f)});
};
addVertices(
points[pointsIndices.front().index] - pointsIndices.front().normal * halfWidth,
points[pointsIndices.front().index] + pointsIndices.front().normal * halfWidth);
// For each pair of adjacent segments we need to add smooth transition.
for (size_t index = 0; index + 2 < pointsIndices.size(); ++index)
{
const PointIndex& pointIndex = pointsIndices[index];
const PointIndex& nextPointIndex = pointsIndices[index + 1];
// Angle between adjacent segments.
const float cosAlpha = pointIndex.normal.Dot(nextPointIndex.normal);
constexpr float EPS = 1e-3f;
// Use a simple segment if adjacent segments are almost codirectional.
if (cosAlpha > 1.0f - EPS)
{
addVertices(
points[pointIndex.index] - pointIndex.normal * halfWidth,
points[pointIndex.index] + pointIndex.normal * halfWidth);
}
else
{
addVertices(
points[nextPointIndex.index] - pointIndex.normal * halfWidth,
points[nextPointIndex.index] + pointIndex.normal * halfWidth);
// Average normal between adjacent segments. We might want to rotate it but
// for now we assume that it's enough for current line widths.
const CVector2D normal = cosAlpha < -1.0f + EPS
? CVector2D(pointIndex.normal.Y, -pointIndex.normal.X)
: ((pointIndex.normal + nextPointIndex.normal) / 2.0f).Normalized();
addVertices(
points[nextPointIndex.index] - normal * halfWidth,
points[nextPointIndex.index] + normal * halfWidth);
addVertices(
points[nextPointIndex.index] - nextPointIndex.normal * halfWidth,
points[nextPointIndex.index] + nextPointIndex.normal * halfWidth);
}
// We use 16-bit indices, it means that we can't use more than 64K vertices.
const size_t requiredFreeSpace = 3 * 4;
if (vertices.size() * 3 + requiredFreeSpace >= 65536)
break;
}
addVertices(
points[pointsIndices.back().index] - pointsIndices[pointsIndices.size() - 2].normal * halfWidth,
points[pointsIndices.back().index] + pointsIndices[pointsIndices.size() - 2].normal * halfWidth);
m->BindTechIfNeeded();
const CShaderProgramPtr& shader = m->Tech->GetShader();
shader->BindTexture(str_tex, g_Renderer.GetTextureManager().GetAlphaGradientTexture()->GetBackendTexture());
shader->Uniform(str_colorAdd, CColor(0.0f, 0.0f, 0.0f, 0.0f));
shader->Uniform(str_colorMul, color);
shader->Uniform(str_grayscaleFactor, 0.0f);
shader->VertexPointer(2, GL_FLOAT, 0, vertices.data());
shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, 0, uvs.data());
shader->AssertPointersBound();
glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_SHORT, indices.data());
}
void CCanvas2D::DrawRect(const CRect& rect, const CColor& color)
{
const PlaneArray2D uvs
{
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
};
const PlaneArray2D vertices =
{
rect.left, rect.bottom,
rect.right, rect.bottom,
rect.right, rect.top,
rect.left, rect.bottom,
rect.right, rect.top,
rect.left, rect.top
};
m->BindTechIfNeeded();
DrawTextureImpl(
m->DeviceCommandContext, m->Tech->GetShader(),
g_Renderer.GetTextureManager().GetTransparentTexture(),
vertices, uvs, CColor(0.0f, 0.0f, 0.0f, 0.0f), color, 0.0f);
}
void CCanvas2D::DrawTexture(CTexturePtr texture, const CRect& destination)
{
DrawTexture(texture,
destination, CRect(0, 0, texture->GetWidth(), texture->GetHeight()),
CColor(1.0f, 1.0f, 1.0f, 1.0f), CColor(0.0f, 0.0f, 0.0f, 0.0f), 0.0f);
}
void CCanvas2D::DrawTexture(
CTexturePtr texture, const CRect& destination, const CRect& source,
const CColor& multiply, const CColor& add, const float grayscaleFactor)
{
const PlaneArray2D uvs =
{
source.left, source.bottom,
source.right, source.bottom,
source.right, source.top,
source.left, source.bottom,
source.right, source.top,
source.left, source.top
};
const PlaneArray2D vertices =
{
destination.left, destination.bottom,
destination.right, destination.bottom,
destination.right, destination.top,
destination.left, destination.bottom,
destination.right, destination.top,
destination.left, destination.top
};
m->BindTechIfNeeded();
DrawTextureImpl(m->DeviceCommandContext, m->Tech->GetShader(),
texture, vertices, uvs, multiply, add, grayscaleFactor);
}
void CCanvas2D::DrawText(CTextRenderer& textRenderer)
{
m->BindTechIfNeeded();
const CShaderProgramPtr& shader = m->Tech->GetShader();
shader->Uniform(str_grayscaleFactor, 0.0f);
textRenderer.Render(m->DeviceCommandContext, shader, GetDefaultGuiMatrix());
}
void CCanvas2D::Flush()
{
m->UnbindTech();
}