1
0
forked from 0ad/0ad
0ad/source/renderer/SilhouetteRenderer.cpp
bb 157c6af18e Make the space in 0 A.D. non-breaking throughout the codebase.
Avoid cases of filenames
Update years in terms and other legal(ish) documents
Don't update years in license headers, since change is not meaningful

Will add linter rule in seperate commit

Happy recompiling everyone!

Original Patch By: Nescio
Comment By: Gallaecio
Differential Revision: D2620
This was SVN commit r27786.
2023-07-27 20:54:46 +00:00

530 lines
16 KiB
C++

/* Copyright (C) 2023 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "SilhouetteRenderer.h"
#include "graphics/Camera.h"
#include "graphics/HFTracer.h"
#include "graphics/Model.h"
#include "graphics/Patch.h"
#include "graphics/ShaderManager.h"
#include "maths/MathUtil.h"
#include "ps/CStrInternStatic.h"
#include "ps/Profile.h"
#include "renderer/DebugRenderer.h"
#include "renderer/Renderer.h"
#include "renderer/Scene.h"
#include <cfloat>
extern int g_xres, g_yres;
// For debugging
static const bool g_DisablePreciseIntersections = false;
SilhouetteRenderer::SilhouetteRenderer()
{
m_DebugEnabled = false;
}
void SilhouetteRenderer::AddOccluder(CPatch* patch)
{
m_SubmittedPatchOccluders.push_back(patch);
}
void SilhouetteRenderer::AddOccluder(CModel* model)
{
m_SubmittedModelOccluders.push_back(model);
}
void SilhouetteRenderer::AddCaster(CModel* model)
{
m_SubmittedModelCasters.push_back(model);
}
/*
* Silhouettes are the solid-colored versions of units that are rendered when
* standing behind a building or terrain, so the player won't lose them.
*
* The rendering is done in CRenderer::RenderSilhouettes, by rendering the
* units (silhouette casters) and buildings/terrain (silhouette occluders)
* in an extra pass using depth and stencil buffers. It's very inefficient to
* render those objects when they're not actually going to contribute to a
* silhouette.
*
* This class is responsible for finding the subset of casters/occluders
* that might contribute to a silhouette and will need to be rendered.
*
* The algorithm is largely based on sweep-and-prune for detecting intersection
* along a single axis:
*
* First we compute the 2D screen-space bounding box of every occluder, and
* their minimum distance from the camera. We also compute the screen-space
* position of each caster (approximating them as points, which is not perfect
* but almost always good enough).
*
* We split each occluder's screen-space bounds into a left ('in') edge and
* right ('out') edge. We put those edges plus the caster points into a list,
* and sort by x coordinate.
*
* Then we walk through the list, maintaining an active set of occluders.
* An 'in' edge will add an occluder to the set, an 'out' edge will remove it.
* When we reach a caster point, the active set contains all the occluders that
* intersect it in x. We do a quick test of y and depth coordinates against
* each occluder in the set. If they pass that test, we do a more precise ray
* vs bounding box test (for model occluders) or ray vs patch (for terrain
* occluders) to see if we really need to render that caster and occluder.
*
* Performance relies on the active set being quite small. Given the game's
* typical occluder sizes and camera angles, this works out okay.
*
* We have to do precise ray/patch intersection tests for terrain, because
* if we just used the patch's bounding box, pretty much every unit would
* be seen as intersecting the patch it's standing on.
*
* We store screen-space coordinates as 14-bit integers (0..16383) because
* that lets us pack and sort the edge/point list efficiently.
*/
static const u16 g_MaxCoord = 1 << 14;
static const u16 g_HalfMaxCoord = g_MaxCoord / 2;
struct Occluder
{
CRenderableObject* renderable;
bool isPatch;
u16 x0, y0, x1, y1;
float z;
bool rendered;
};
struct Caster
{
CModel* model;
u16 x, y;
float z;
bool rendered;
};
enum { EDGE_IN, EDGE_OUT, POINT };
// Entry is essentially:
// struct Entry {
// u16 id; // index into occluders array
// u16 type : 2;
// u16 x : 14;
// };
// where x is in the most significant bits, so that sorting as a uint32_t
// is the same as sorting by x. To avoid worrying about endianness and the
// compiler's ability to handle bitfields efficiently, we use uint32_t instead
// of the actual struct.
typedef uint32_t Entry;
static Entry EntryCreate(int type, u16 id, u16 x) { return (x << 18) | (type << 16) | id; }
static int EntryGetId(Entry e) { return e & 0xffff; }
static int EntryGetType(Entry e) { return (e >> 16) & 3; }
struct ActiveList
{
std::vector<u16> m_Ids;
void Add(u16 id)
{
m_Ids.push_back(id);
}
void Remove(u16 id)
{
ssize_t sz = m_Ids.size();
for (ssize_t i = sz-1; i >= 0; --i)
{
if (m_Ids[i] == id)
{
m_Ids[i] = m_Ids[sz-1];
m_Ids.pop_back();
return;
}
}
debug_warn(L"Failed to find id");
}
};
static void ComputeScreenBounds(Occluder& occluder, const CBoundingBoxAligned& bounds, CMatrix3D& proj)
{
u16 x0 = std::numeric_limits<u16>::max();
u16 y0 = std::numeric_limits<u16>::max();
u16 x1 = std::numeric_limits<u16>::min();
u16 y1 = std::numeric_limits<u16>::min();
float z0 = std::numeric_limits<float>::max();
for (size_t ix = 0; ix <= 1; ++ix)
{
for (size_t iy = 0; iy <= 1; ++iy)
{
for (size_t iz = 0; iz <= 1; ++iz)
{
CVector4D svec = proj.Transform(CVector4D(bounds[ix].X, bounds[iy].Y, bounds[iz].Z, 1.0f));
x0 = std::min(x0, static_cast<u16>(g_HalfMaxCoord + static_cast<u16>(g_HalfMaxCoord * svec.X / svec.W)));
y0 = std::min(y0, static_cast<u16>(g_HalfMaxCoord + static_cast<u16>(g_HalfMaxCoord * svec.Y / svec.W)));
x1 = std::max(x1, static_cast<u16>(g_HalfMaxCoord + static_cast<u16>(g_HalfMaxCoord * svec.X / svec.W)));
y1 = std::max(y1, static_cast<u16>(g_HalfMaxCoord + static_cast<u16>(g_HalfMaxCoord * svec.Y / svec.W)));
z0 = std::min(z0, svec.Z / svec.W);
}
}
}
// TODO: there must be a quicker way to do this than to test every vertex,
// given the symmetry of the bounding box
occluder.x0 = Clamp(x0, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
occluder.y0 = Clamp(y0, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
occluder.x1 = Clamp(x1, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
occluder.y1 = Clamp(y1, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
occluder.z = z0;
}
static void ComputeScreenPos(Caster& caster, const CVector3D& pos, CMatrix3D& proj)
{
CVector4D svec = proj.Transform(CVector4D(pos.X, pos.Y, pos.Z, 1.0f));
u16 x = g_HalfMaxCoord + static_cast<int>(g_HalfMaxCoord * svec.X / svec.W);
u16 y = g_HalfMaxCoord + static_cast<int>(g_HalfMaxCoord * svec.Y / svec.W);
caster.x = Clamp(x, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
caster.y = Clamp(y, std::numeric_limits<u16>::min(), static_cast<u16>(g_MaxCoord - 1));
caster.z = svec.Z / svec.W;
}
void SilhouetteRenderer::ComputeSubmissions(const CCamera& camera)
{
PROFILE3("compute silhouettes");
m_DebugBounds.clear();
m_DebugRects.clear();
m_DebugSpheres.clear();
m_VisiblePatchOccluders.clear();
m_VisibleModelOccluders.clear();
m_VisibleModelCasters.clear();
std::vector<Occluder> occluders;
std::vector<Caster> casters;
std::vector<Entry> entries;
occluders.reserve(m_SubmittedModelOccluders.size() + m_SubmittedPatchOccluders.size());
casters.reserve(m_SubmittedModelCasters.size());
entries.reserve((m_SubmittedModelOccluders.size() + m_SubmittedPatchOccluders.size()) * 2 + m_SubmittedModelCasters.size());
CMatrix3D proj = camera.GetViewProjection();
// Bump the positions of unit casters upwards a bit, so they're not always
// detected as intersecting the terrain they're standing on
CVector3D posOffset(0.0f, 0.1f, 0.0f);
#if 0
// For debugging ray-patch intersections - casts a ton of rays and draws
// a sphere where they intersect
for (int y = 0; y < g_yres; y += 8)
{
for (int x = 0; x < g_xres; x += 8)
{
SOverlaySphere sphere;
sphere.m_Color = CColor(1, 0, 0, 1);
sphere.m_Radius = 0.25f;
sphere.m_Center = camera.GetWorldCoordinates(x, y, false);
CVector3D origin, dir;
camera.BuildCameraRay(x, y, origin, dir);
for (size_t i = 0; i < m_SubmittedPatchOccluders.size(); ++i)
{
CPatch* occluder = m_SubmittedPatchOccluders[i];
if (CHFTracer::PatchRayIntersect(occluder, origin, dir, &sphere.m_Center))
sphere.m_Color = CColor(0, 0, 1, 1);
}
m_DebugSpheres.push_back(sphere);
}
}
#endif
{
PROFILE("compute bounds");
for (size_t i = 0; i < m_SubmittedModelOccluders.size(); ++i)
{
CModel* occluder = m_SubmittedModelOccluders[i];
Occluder d;
d.renderable = occluder;
d.isPatch = false;
d.rendered = false;
ComputeScreenBounds(d, occluder->GetWorldBounds(), proj);
// Skip zero-sized occluders, so we don't need to worry about EDGE_OUT
// getting sorted before EDGE_IN
if (d.x0 == d.x1 || d.y0 == d.y1)
continue;
u16 id = static_cast<u16>(occluders.size());
occluders.push_back(d);
entries.push_back(EntryCreate(EDGE_IN, id, d.x0));
entries.push_back(EntryCreate(EDGE_OUT, id, d.x1));
}
for (size_t i = 0; i < m_SubmittedPatchOccluders.size(); ++i)
{
CPatch* occluder = m_SubmittedPatchOccluders[i];
Occluder d;
d.renderable = occluder;
d.isPatch = true;
d.rendered = false;
ComputeScreenBounds(d, occluder->GetWorldBounds(), proj);
// Skip zero-sized occluders
if (d.x0 == d.x1 || d.y0 == d.y1)
continue;
u16 id = static_cast<u16>(occluders.size());
occluders.push_back(d);
entries.push_back(EntryCreate(EDGE_IN, id, d.x0));
entries.push_back(EntryCreate(EDGE_OUT, id, d.x1));
}
for (size_t i = 0; i < m_SubmittedModelCasters.size(); ++i)
{
CModel* model = m_SubmittedModelCasters[i];
CVector3D pos = model->GetTransform().GetTranslation() + posOffset;
Caster d;
d.model = model;
d.rendered = false;
ComputeScreenPos(d, pos, proj);
u16 id = static_cast<u16>(casters.size());
casters.push_back(d);
entries.push_back(EntryCreate(POINT, id, d.x));
}
}
// Make sure the u16 id didn't overflow
ENSURE(occluders.size() < 65536 && casters.size() < 65536);
{
PROFILE("sorting");
std::sort(entries.begin(), entries.end());
}
{
PROFILE("sweeping");
ActiveList active;
CVector3D cameraPos = camera.GetOrientation().GetTranslation();
for (size_t i = 0; i < entries.size(); ++i)
{
Entry e = entries[i];
int type = EntryGetType(e);
u16 id = EntryGetId(e);
if (type == EDGE_IN)
active.Add(id);
else if (type == EDGE_OUT)
active.Remove(id);
else
{
Caster& caster = casters[id];
for (size_t j = 0; j < active.m_Ids.size(); ++j)
{
Occluder& occluder = occluders[active.m_Ids[j]];
if (caster.y < occluder.y0 || caster.y > occluder.y1)
continue;
if (caster.z < occluder.z)
continue;
// No point checking further if both are already being rendered
if (caster.rendered && occluder.rendered)
continue;
if (!g_DisablePreciseIntersections)
{
CVector3D pos = caster.model->GetTransform().GetTranslation() + posOffset;
if (occluder.isPatch)
{
CPatch* patch = static_cast<CPatch*>(occluder.renderable);
if (!CHFTracer::PatchRayIntersect(patch, pos, cameraPos - pos, NULL))
continue;
}
else
{
float tmin, tmax;
if (!occluder.renderable->GetWorldBounds().RayIntersect(pos, cameraPos - pos, tmin, tmax))
continue;
}
}
caster.rendered = true;
occluder.rendered = true;
}
}
}
}
if (m_DebugEnabled)
{
for (size_t i = 0; i < occluders.size(); ++i)
{
DebugRect r;
r.color = occluders[i].rendered ? CColor(1.0f, 1.0f, 0.0f, 1.0f) : CColor(0.2f, 0.2f, 0.0f, 1.0f);
r.x0 = occluders[i].x0;
r.y0 = occluders[i].y0;
r.x1 = occluders[i].x1;
r.y1 = occluders[i].y1;
m_DebugRects.push_back(r);
DebugBounds b;
b.color = r.color;
b.bounds = occluders[i].renderable->GetWorldBounds();
m_DebugBounds.push_back(b);
}
}
for (size_t i = 0; i < occluders.size(); ++i)
{
if (occluders[i].rendered)
{
if (occluders[i].isPatch)
m_VisiblePatchOccluders.push_back(static_cast<CPatch*>(occluders[i].renderable));
else
m_VisibleModelOccluders.push_back(static_cast<CModel*>(occluders[i].renderable));
}
}
for (size_t i = 0; i < casters.size(); ++i)
if (casters[i].rendered)
m_VisibleModelCasters.push_back(casters[i].model);
}
void SilhouetteRenderer::RenderSubmitOverlays(SceneCollector& collector)
{
for (size_t i = 0; i < m_DebugSpheres.size(); i++)
collector.Submit(&m_DebugSpheres[i]);
}
void SilhouetteRenderer::RenderSubmitOccluders(SceneCollector& collector)
{
for (size_t i = 0; i < m_VisiblePatchOccluders.size(); ++i)
collector.Submit(m_VisiblePatchOccluders[i]);
for (size_t i = 0; i < m_VisibleModelOccluders.size(); ++i)
collector.SubmitNonRecursive(m_VisibleModelOccluders[i]);
}
void SilhouetteRenderer::RenderSubmitCasters(SceneCollector& collector)
{
for (size_t i = 0; i < m_VisibleModelCasters.size(); ++i)
collector.SubmitNonRecursive(m_VisibleModelCasters[i]);
}
void SilhouetteRenderer::RenderDebugBounds(
Renderer::Backend::IDeviceCommandContext* UNUSED(deviceCommandContext))
{
if (m_DebugBounds.empty())
return;
for (size_t i = 0; i < m_DebugBounds.size(); ++i)
g_Renderer.GetDebugRenderer().DrawBoundingBox(m_DebugBounds[i].bounds, m_DebugBounds[i].color, true);
}
void SilhouetteRenderer::RenderDebugOverlays(
Renderer::Backend::IDeviceCommandContext* deviceCommandContext)
{
if (m_DebugRects.empty())
return;
// TODO: use CCanvas2D for drawing rects.
CMatrix3D m;
m.SetIdentity();
m.Scale(1.0f, -1.f, 1.0f);
m.Translate(0.0f, (float)g_yres, -1000.0f);
CMatrix3D proj;
proj.SetOrtho(0.f, g_MaxCoord, 0.f, g_MaxCoord, -1.f, 1000.f);
m = proj * m;
if (!m_ShaderTech)
{
m_ShaderTech = g_Renderer.GetShaderManager().LoadEffect(
str_solid, {},
[](Renderer::Backend::SGraphicsPipelineStateDesc& pipelineStateDesc)
{
pipelineStateDesc.rasterizationState.polygonMode = Renderer::Backend::PolygonMode::LINE;
pipelineStateDesc.rasterizationState.cullMode = Renderer::Backend::CullMode::NONE;
});
const std::array<Renderer::Backend::SVertexAttributeFormat, 1> attributes{{
{Renderer::Backend::VertexAttributeStream::POSITION,
Renderer::Backend::Format::R32G32_SFLOAT, 0, sizeof(float) * 2,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0}
}};
m_VertexInputLayout = g_Renderer.GetVertexInputLayout(attributes);
}
deviceCommandContext->BeginPass();
deviceCommandContext->SetGraphicsPipelineState(
m_ShaderTech->GetGraphicsPipelineState());
Renderer::Backend::IShaderProgram* shader = m_ShaderTech->GetShader();
deviceCommandContext->SetUniform(
shader->GetBindingSlot(str_transform), proj.AsFloatArray());
const int32_t colorBindingSlot = shader->GetBindingSlot(str_color);
for (const DebugRect& r : m_DebugRects)
{
deviceCommandContext->SetUniform(
colorBindingSlot, r.color.AsFloatArray());
const float vertices[] =
{
r.x0, r.y0,
r.x1, r.y0,
r.x1, r.y1,
r.x0, r.y0,
r.x1, r.y1,
r.x0, r.y1,
};
deviceCommandContext->SetVertexInputLayout(m_VertexInputLayout);
deviceCommandContext->SetVertexBufferData(
0, vertices, std::size(vertices) * sizeof(vertices[0]));
deviceCommandContext->Draw(0, 6);
}
deviceCommandContext->EndPass();
}
void SilhouetteRenderer::EndFrame()
{
m_SubmittedPatchOccluders.clear();
m_SubmittedModelOccluders.clear();
m_SubmittedModelCasters.clear();
}