1
0
forked from 0ad/0ad
0ad/source/graphics/ModelDef.cpp
wraitii f73fa05542 Cache the model-animation bounds more efficiently.
To render models, we need to know the maximum bounds it takes over the
course of an animation. This depends only on the ModelDef and the
AnimationDef (and thus the SkeletonDef).
Currently, we recompute this data for each model, which is inefficient.
Caching it in ModelDef is faster, particularly avoiding lag spikes at
game start on some maps.
The animations are referred by a unique ID to avoid pointer-related
issues. I would have preferred weak_ptr, but that cannot be stably
hashed for now.

While at it, switch to unique_ptr/vectors.

Differential Revision: https://code.wildfiregames.com/D2967
This was SVN commit r25306.
2021-04-23 14:26:59 +00:00

527 lines
17 KiB
C++

/* Copyright (C) 2021 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Defines a raw 3d model.
*/
#include "precompiled.h"
#include "ModelDef.h"
#include "graphics/SkeletonAnimDef.h"
#include "lib/sysdep/arch/x86_x64/simd.h"
#include "ps/FileIo.h"
#include "maths/Vector4D.h"
#if COMPILER_HAS_SSE
# include <xmmintrin.h>
#endif
void CModelDef::GetMaxBounds(CSkeletonAnimDef* anim, bool loop, CBoundingBoxAligned& result)
{
std::unordered_map<u32, CBoundingBoxAligned>::const_iterator it = m_MaxBoundsPerAnimDef.find(anim ? anim->m_UID : 0);
if (it != m_MaxBoundsPerAnimDef.end())
{
result = it->second;
return;
}
size_t numverts = GetNumVertices();
SModelVertex* verts = GetVertices();
if (!anim)
{
for (size_t i = 0; i < numverts; ++i)
result += verts[i].m_Coords;
m_MaxBoundsPerAnimDef[0] = result;
return;
}
ENSURE(anim->m_UID != 0);
std::vector<CMatrix3D> boneMatrix(anim->GetNumKeys());
// NB: by using frames, the bounds are technically pessimistic (since interpolation could end up outside of them).
for (size_t j = 0; j < anim->GetNumFrames(); ++j)
{
anim->BuildBoneMatrices(j*anim->GetFrameTime(), boneMatrix.data(), loop);
for (size_t i = 0; i < numverts; ++i)
result += SkinPoint(verts[i], boneMatrix.data());
}
m_MaxBoundsPerAnimDef[anim->m_UID] = result;
}
CVector3D CModelDef::SkinPoint(const SModelVertex& vtx,
const CMatrix3D newPoseMatrices[])
{
CVector3D result (0, 0, 0);
for (int i = 0; i < SVertexBlend::SIZE && vtx.m_Blend.m_Bone[i] != 0xff; ++i)
{
result += newPoseMatrices[vtx.m_Blend.m_Bone[i]].Transform(vtx.m_Coords) * vtx.m_Blend.m_Weight[i];
}
return result;
}
CVector3D CModelDef::SkinNormal(const SModelVertex& vtx,
const CMatrix3D newPoseMatrices[])
{
// To be correct, the normal vectors apparently need to be multiplied by the
// inverse of the transpose. Unfortunately inverses are slow.
// If a matrix is orthogonal, M * M^T = I and so the inverse of the transpose
// is the original matrix. But that's not entirely relevant here, because
// the bone matrices include translation components and so they're not
// orthogonal.
// But that's okay because we have
// M = T * R
// and want to find
// n' = (M^T^-1) * n
// = (T * R)^T^-1 * n
// = (R^T * T^T)^-1 * n
// = (T^T^-1 * R^T^-1) * n
// R is indeed orthogonal so R^T^-1 = R. T isn't orthogonal at all.
// But n is only a 3-vector, and from the forms of T and R (which have
// lots of zeroes) I can convince myself that replacing T with T^T^-1 has no
// effect on anything but the fourth component of M^T^-1 - and the fourth
// component is discarded since it has no effect on n', and so we can happily
// use n' = M*n.
//
// (This isn't very good as a proof, but it's better than assuming M is
// orthogonal when it's clearly not.)
CVector3D result (0, 0, 0);
for (int i = 0; i < SVertexBlend::SIZE && vtx.m_Blend.m_Bone[i] != 0xff; ++i)
{
result += newPoseMatrices[vtx.m_Blend.m_Bone[i]].Rotate(vtx.m_Norm) * vtx.m_Blend.m_Weight[i];
}
// If there was more than one influence, the result is probably not going
// to be of unit length (since it's a weighted sum of several independent
// unit vectors), so we need to normalise it.
// (It's fairly common to only have one influence, so it seems sensible to
// optimise that case a bit.)
if (vtx.m_Blend.m_Bone[1] != 0xff) // if more than one influence
result.Normalize();
return result;
}
void(*CModelDef::SkinPointsAndNormals)(
size_t numVertices,
const VertexArrayIterator<CVector3D>& Position,
const VertexArrayIterator<CVector3D>& Normal,
const SModelVertex* vertices,
const size_t* blendIndices,
const CMatrix3D newPoseMatrices[]) {};
static void SkinPointsAndNormalsFallback(
size_t numVertices,
const VertexArrayIterator<CVector3D>& Position,
const VertexArrayIterator<CVector3D>& Normal,
const SModelVertex* vertices,
const size_t* blendIndices,
const CMatrix3D newPoseMatrices[])
{
// To avoid some performance overhead, get the raw vertex array pointers
char* PositionData = Position.GetData();
size_t PositionStride = Position.GetStride();
char* NormalData = Normal.GetData();
size_t NormalStride = Normal.GetStride();
for (size_t j = 0; j < numVertices; ++j)
{
const SModelVertex& vtx = vertices[j];
CVector3D pos = newPoseMatrices[blendIndices[j]].Transform(vtx.m_Coords);
CVector3D norm = newPoseMatrices[blendIndices[j]].Rotate(vtx.m_Norm);
// If there was more than one influence, the result is probably not going
// to be of unit length (since it's a weighted sum of several independent
// unit vectors), so we need to normalise it.
// (It's fairly common to only have one influence, so it seems sensible to
// optimise that case a bit.)
if (vtx.m_Blend.m_Bone[1] != 0xff) // if more than one influence
norm.Normalize();
memcpy(PositionData + PositionStride*j, &pos.X, 3*sizeof(float));
memcpy(NormalData + NormalStride*j, &norm.X, 3*sizeof(float));
}
}
#if COMPILER_HAS_SSE
static void SkinPointsAndNormalsSSE(
size_t numVertices,
const VertexArrayIterator<CVector3D>& Position,
const VertexArrayIterator<CVector3D>& Normal,
const SModelVertex* vertices,
const size_t* blendIndices,
const CMatrix3D newPoseMatrices[])
{
// To avoid some performance overhead, get the raw vertex array pointers
char* PositionData = Position.GetData();
size_t PositionStride = Position.GetStride();
char* NormalData = Normal.GetData();
size_t NormalStride = Normal.GetStride();
// Must be aligned correctly for SSE
ASSERT((intptr_t)newPoseMatrices % 16 == 0);
ASSERT((intptr_t)PositionData % 16 == 0);
ASSERT((intptr_t)PositionStride % 16 == 0);
ASSERT((intptr_t)NormalData % 16 == 0);
ASSERT((intptr_t)NormalStride % 16 == 0);
__m128 col0, col1, col2, col3, vec0, vec1, vec2;
for (size_t j = 0; j < numVertices; ++j)
{
const SModelVertex& vtx = vertices[j];
const CMatrix3D& mtx = newPoseMatrices[blendIndices[j]];
// Loads matrix to xmm registers.
col0 = _mm_load_ps(mtx._data);
col1 = _mm_load_ps(mtx._data + 4);
col2 = _mm_load_ps(mtx._data + 8);
col3 = _mm_load_ps(mtx._data + 12);
// Loads and computes vertex coordinates.
vec0 = _mm_load1_ps(&vtx.m_Coords.X); // v0 = [x, x, x, x]
vec0 = _mm_mul_ps(col0, vec0); // v0 = [_11*x, _21*x, _31*x, _41*x]
vec1 = _mm_load1_ps(&vtx.m_Coords.Y); // v1 = [y, y, y, y]
vec1 = _mm_mul_ps(col1, vec1); // v1 = [_12*y, _22*y, _32*y, _42*y]
vec0 = _mm_add_ps(vec0, vec1); // v0 = [_11*x + _12*y, ...]
vec1 = _mm_load1_ps(&vtx.m_Coords.Z); // v1 = [z, z, z, z]
vec1 = _mm_mul_ps(col2, vec1); // v1 = [_13*z, _23*z, _33*z, _43*z]
vec1 = _mm_add_ps(vec1, col3); // v1 = [_13*z + _14, ...]
vec0 = _mm_add_ps(vec0, vec1); // v0 = [_11*x + _12*y + _13*z + _14, ...]
_mm_store_ps((float*)(PositionData + PositionStride*j), vec0);
// Loads and computes normal vectors.
vec0 = _mm_load1_ps(&vtx.m_Norm.X); // v0 = [x, x, x, x]
vec0 = _mm_mul_ps(col0, vec0); // v0 = [_11*x, _21*x, _31*x, _41*x]
vec1 = _mm_load1_ps(&vtx.m_Norm.Y); // v1 = [y, y, y, y]
vec1 = _mm_mul_ps(col1, vec1); // v1 = [_12*y, _22*y, _32*y, _42*y]
vec0 = _mm_add_ps(vec0, vec1); // v0 = [_11*x + _12*y, ...]
vec1 = _mm_load1_ps(&vtx.m_Norm.Z); // v1 = [z, z, z, z]
vec1 = _mm_mul_ps(col2, vec1); // v1 = [_13*z, _23*z, _33*z, _43*z]
vec0 = _mm_add_ps(vec0, vec1); // v0 = [_11*x + _12*y + _13*z, ...]
// If there was more than one influence, the result is probably not going
// to be of unit length (since it's a weighted sum of several independent
// unit vectors), so we need to normalise it.
// (It's fairly common to only have one influence, so it seems sensible to
// optimise that case a bit.)
if (vtx.m_Blend.m_Bone[1] != 0xff) // if more than one influence
{
// Normalization.
// vec1 = [x*x, y*y, z*z, ?*?]
vec1 = _mm_mul_ps(vec0, vec0);
// vec2 = [y*y, z*z, x*x, ?*?]
vec2 = _mm_shuffle_ps(vec1, vec1, _MM_SHUFFLE(3, 0, 2, 1));
vec1 = _mm_add_ps(vec1, vec2);
// vec2 = [z*z, x*x, y*y, ?*?]
vec2 = _mm_shuffle_ps(vec2, vec2, _MM_SHUFFLE(3, 0, 2, 1));
vec1 = _mm_add_ps(vec1, vec2);
// rsqrt(a) = 1 / sqrt(a)
vec1 = _mm_rsqrt_ps(vec1);
vec0 = _mm_mul_ps(vec0, vec1);
}
_mm_store_ps((float*)(NormalData + NormalStride*j), vec0);
}
}
#endif
void CModelDef::BlendBoneMatrices(
CMatrix3D boneMatrices[])
{
for (size_t i = 0; i < m_NumBlends; ++i)
{
const SVertexBlend& blend = m_pBlends[i];
CMatrix3D& boneMatrix = boneMatrices[m_NumBones + 1 + i];
// Note: there is a special case of joint influence, in which the vertex
// is influenced by the bind-shape matrix instead of a particular bone,
// which we indicate by setting the bone ID to the total number of bones.
// It should be blended with the world space transform and we have already
// set up this matrix in boneMatrices.
// (see http://trac.wildfiregames.com/ticket/1012)
boneMatrix.Blend(boneMatrices[blend.m_Bone[0]], blend.m_Weight[0]);
for (size_t j = 1; j < SVertexBlend::SIZE && blend.m_Bone[j] != 0xFF; ++j)
boneMatrix.AddBlend(boneMatrices[blend.m_Bone[j]], blend.m_Weight[j]);
}
}
// CModelDef Constructor
CModelDef::CModelDef() :
m_NumVertices(0), m_NumUVsPerVertex(0), m_pVertices(0), m_NumFaces(0), m_pFaces(0),
m_NumBones(0), m_Bones(0), m_InverseBindBoneMatrices(NULL),
m_NumBlends(0), m_pBlends(0), m_pBlendIndices(0),
m_Name(L"[not loaded]")
{
}
// CModelDef Destructor
CModelDef::~CModelDef()
{
for(RenderDataMap::iterator it = m_RenderData.begin(); it != m_RenderData.end(); ++it)
delete it->second;
delete[] m_pVertices;
delete[] m_pFaces;
delete[] m_Bones;
delete[] m_InverseBindBoneMatrices;
delete[] m_pBlends;
delete[] m_pBlendIndices;
}
// FindPropPoint: find and return pointer to prop point matching given name;
// return null if no match (case insensitive search)
const SPropPoint* CModelDef::FindPropPoint(const char* name) const
{
for (size_t i = 0; i < m_PropPoints.size(); ++i)
if (m_PropPoints[i].m_Name == name)
return &m_PropPoints[i];
return 0;
}
// Load: read and return a new CModelDef initialised with data from given file
CModelDef* CModelDef::Load(const VfsPath& filename, const VfsPath& name)
{
CFileUnpacker unpacker;
// read everything in from file
unpacker.Read(filename,"PSMD");
// check version
if (unpacker.GetVersion()<FILE_READ_VERSION) {
throw PSERROR_File_InvalidVersion();
}
std::unique_ptr<CModelDef> mdef = std::make_unique<CModelDef>();
mdef->m_Name = name;
// now unpack everything
mdef->m_NumVertices = unpacker.UnpackSize();
// versions prior to 4 only support 1 UV set, 4 and later store it here
if (unpacker.GetVersion() <= 3)
{
mdef->m_NumUVsPerVertex = 1;
}
else
{
mdef->m_NumUVsPerVertex = unpacker.UnpackSize();
}
mdef->m_pVertices=new SModelVertex[mdef->m_NumVertices];
for (size_t i = 0; i < mdef->m_NumVertices; ++i)
{
unpacker.UnpackRaw(&mdef->m_pVertices[i].m_Coords, 12);
unpacker.UnpackRaw(&mdef->m_pVertices[i].m_Norm, 12);
for (size_t s = 0; s < mdef->m_NumUVsPerVertex; ++s)
{
float uv[2];
unpacker.UnpackRaw(&uv[0], 8);
mdef->m_pVertices[i].m_UVs.push_back(uv[0]);
mdef->m_pVertices[i].m_UVs.push_back(uv[1]);
}
unpacker.UnpackRaw(&mdef->m_pVertices[i].m_Blend, sizeof(SVertexBlend));
}
mdef->m_NumFaces = unpacker.UnpackSize();
mdef->m_pFaces=new SModelFace[mdef->m_NumFaces];
unpacker.UnpackRaw(mdef->m_pFaces,sizeof(SModelFace)*mdef->m_NumFaces);
mdef->m_NumBones = unpacker.UnpackSize();
if (mdef->m_NumBones)
{
mdef->m_Bones=new CBoneState[mdef->m_NumBones];
unpacker.UnpackRaw(mdef->m_Bones,mdef->m_NumBones*sizeof(CBoneState));
mdef->m_pBlendIndices = new size_t[mdef->m_NumVertices];
std::vector<SVertexBlend> blends;
for (size_t i = 0; i < mdef->m_NumVertices; i++)
{
const SVertexBlend &blend = mdef->m_pVertices[i].m_Blend;
if (blend.m_Bone[1] == 0xFF)
{
mdef->m_pBlendIndices[i] = blend.m_Bone[0];
}
else
{
// If there's already a vertex using the same blend as this, then
// reuse its entry from blends; otherwise add the new one to blends
size_t j;
for (j = 0; j < blends.size(); j++)
{
if (blend == blends[j]) break;
}
if (j >= blends.size())
blends.push_back(blend);
// This index is offset by one to allow the special case of a
// weighted influence relative to the bind-shape rather than
// a particular bone. See comment in BlendBoneMatrices.
mdef->m_pBlendIndices[i] = mdef->m_NumBones + 1 + j;
}
}
mdef->m_NumBlends = blends.size();
mdef->m_pBlends = new SVertexBlend[mdef->m_NumBlends];
std::copy(blends.begin(), blends.end(), mdef->m_pBlends);
}
if (unpacker.GetVersion() >= 2)
{
// versions >=2 also have prop point data
size_t numPropPoints = unpacker.UnpackSize();
mdef->m_PropPoints.resize(numPropPoints);
if (numPropPoints)
{
for (size_t i = 0; i < numPropPoints; i++)
{
unpacker.UnpackString(mdef->m_PropPoints[i].m_Name);
unpacker.UnpackRaw(&mdef->m_PropPoints[i].m_Position.X, sizeof(mdef->m_PropPoints[i].m_Position));
unpacker.UnpackRaw(&mdef->m_PropPoints[i].m_Rotation.m_V.X, sizeof(mdef->m_PropPoints[i].m_Rotation));
unpacker.UnpackRaw(&mdef->m_PropPoints[i].m_BoneIndex, sizeof(mdef->m_PropPoints[i].m_BoneIndex));
// build prop point transform
mdef->m_PropPoints[i].m_Transform.SetIdentity();
mdef->m_PropPoints[i].m_Transform.Rotate(mdef->m_PropPoints[i].m_Rotation);
mdef->m_PropPoints[i].m_Transform.Translate(mdef->m_PropPoints[i].m_Position);
}
}
}
if (unpacker.GetVersion() <= 2)
{
// Versions <=2 don't include the default 'root' prop point, so add it here
SPropPoint prop;
prop.m_Name = "root";
prop.m_Transform.SetIdentity();
prop.m_BoneIndex = 0xFF;
mdef->m_PropPoints.push_back(prop);
}
if (unpacker.GetVersion() <= 2)
{
// Versions <=2 store the vertexes relative to the bind pose. That
// isn't useful when you want to do correct skinning, so later versions
// store them in world space. So, fix the old models by skinning each
// vertex:
if (mdef->m_NumBones) // only do skinned models
{
std::vector<CMatrix3D> bindPose (mdef->m_NumBones);
for (size_t i = 0; i < mdef->m_NumBones; ++i)
{
bindPose[i].SetIdentity();
bindPose[i].Rotate(mdef->m_Bones[i].m_Rotation);
bindPose[i].Translate(mdef->m_Bones[i].m_Translation);
}
for (size_t i = 0; i < mdef->m_NumVertices; ++i)
{
mdef->m_pVertices[i].m_Coords = SkinPoint(mdef->m_pVertices[i], &bindPose[0]);
mdef->m_pVertices[i].m_Norm = SkinNormal(mdef->m_pVertices[i], &bindPose[0]);
}
}
}
// Compute the inverse bind-pose matrices, needed by the skinning code
mdef->m_InverseBindBoneMatrices = new CMatrix3D[mdef->m_NumBones];
CBoneState* defpose = mdef->GetBones();
for (size_t i = 0; i < mdef->m_NumBones; ++i)
{
mdef->m_InverseBindBoneMatrices[i].SetIdentity();
mdef->m_InverseBindBoneMatrices[i].Translate(-defpose[i].m_Translation);
mdef->m_InverseBindBoneMatrices[i].Rotate(defpose[i].m_Rotation.GetInverse());
}
return mdef.release();
}
// Save: write the given CModelDef to the given file
void CModelDef::Save(const VfsPath& filename, const CModelDef* mdef)
{
CFilePacker packer(FILE_VERSION, "PSMD");
// pack everything up
const size_t numVertices = mdef->GetNumVertices();
packer.PackSize(numVertices);
packer.PackRaw(mdef->GetVertices(), sizeof(SModelVertex) * numVertices);
const size_t numFaces = mdef->GetNumFaces();
packer.PackSize(numFaces);
packer.PackRaw(mdef->GetFaces(), sizeof(SModelFace) * numFaces);
const size_t numBones = mdef->m_NumBones;
packer.PackSize(numBones);
if (numBones)
packer.PackRaw(mdef->m_Bones, sizeof(CBoneState) * numBones);
const size_t numPropPoints = mdef->m_PropPoints.size();
packer.PackSize(numPropPoints);
for (size_t i = 0; i < numPropPoints; i++)
{
packer.PackString(mdef->m_PropPoints[i].m_Name);
packer.PackRaw(&mdef->m_PropPoints[i].m_Position.X, sizeof(mdef->m_PropPoints[i].m_Position));
packer.PackRaw(&mdef->m_PropPoints[i].m_Rotation.m_V.X, sizeof(mdef->m_PropPoints[i].m_Rotation));
packer.PackRaw(&mdef->m_PropPoints[i].m_BoneIndex, sizeof(mdef->m_PropPoints[i].m_BoneIndex));
}
// flush everything out to file
packer.Write(filename);
}
// SetRenderData: Set the render data object for the given key,
void CModelDef::SetRenderData(const void* key, CModelDefRPrivate* data)
{
delete m_RenderData[key];
m_RenderData[key] = data;
}
// GetRenderData: Get the render data object for the given key,
// or 0 if no such object exists.
// Reference count of the render data object is automatically increased.
CModelDefRPrivate* CModelDef::GetRenderData(const void* key) const
{
RenderDataMap::const_iterator it = m_RenderData.find(key);
if (it != m_RenderData.end())
return it->second;
return 0;
}
void ModelDefActivateFastImpl()
{
#if COMPILER_HAS_SSE
if (HostHasSSE())
{
CModelDef::SkinPointsAndNormals = SkinPointsAndNormalsSSE;
return;
}
#endif
CModelDef::SkinPointsAndNormals = SkinPointsAndNormalsFallback;
}