1
0
forked from 0ad/0ad
0ad/source/lib/res/graphics/tex_dds.cpp
janwas 2a8953452d inlined bits and bit_mask for efficiency (as suggested by philip - thanks!)
add sanity check for struct Tex

This was SVN commit r2755.
2005-09-19 23:40:33 +00:00

432 lines
12 KiB
C++

#include "precompiled.h"
#include "lib/byte_order.h"
#include "lib/res/mem.h"
#include "tex_codec.h"
// NOTE: the convention is bottom-up for DDS, but there's no way to tell.
// defs modified from ddraw header
#pragma pack(push, 1)
// DDPIXELFORMAT.dwFlags
#define DDPF_ALPHAPIXELS 0x00000001
typedef struct
{
u32 dwSize; // size of structure (32)
u32 dwFlags; // indicates which fields are valid
u32 dwFourCC; // (DDPF_FOURCC) FOURCC code, "DXTn"
u32 dwReserved1[5]; // reserved
}
DDPIXELFORMAT;
typedef struct
{
u32 dwCaps[4];
}
DDSCAPS2;
// DDSURFACEDESC2.dwFlags
#define DDSD_HEIGHT 0x00000002
#define DDSD_WIDTH 0x00000004
#define DDSD_PIXELFORMAT 0x00001000
#define DDSD_MIPMAPCOUNT 0x00020000
typedef struct
{
u32 dwSize; // size of structure (124)
u32 dwFlags; // indicates which fields are valid
u32 dwHeight; // height of main image (pixels)
u32 dwWidth; // width of main image (pixels)
u32 dwLinearSize; // (DDSD_LINEARSIZE): total image size
u32 dwDepth; // (DDSD_DEPTH) vol. textures: vol. depth
u32 dwMipMapCount; // (DDSD_MIPMAPCOUNT) total # levels
u32 dwReserved1[11]; // reserved
DDPIXELFORMAT ddpfPixelFormat; // pixel format description of the surface
DDSCAPS2 ddsCaps; // direct draw surface capabilities
u32 dwReserved2; // reserved
}
DDSURFACEDESC2;
#pragma pack(pop)
// pixel colors are stored as uint[4]. uint rather than u8 protects from
// overflow during calculations, and padding to an even size is a bit
// more efficient (even though we don't need the alpha component).
enum RGBA { R, G, B, A };
static inline void mix_2_3(uint dst[4], uint c0[4], uint c1[4])
{
for(int i = 0; i < 3; i++) dst[i] = (c0[i]*2 + c1[i] + 1)/3;
}
static inline void mix_avg(uint dst[4], uint c0[4], uint c1[4])
{
for(int i = 0; i < 3; i++) dst[i] = (c0[i]+c1[i])/2;
}
static inline uint access_bit_tbl(u32 tbl, uint idx, uint bit_width)
{
uint val = tbl >> (idx*bit_width);
val &= (1u << bit_width)-1;
return val;
}
static inline uint access_bit_tbl64(u64 tbl, uint idx, uint bit_width)
{
uint val = (uint)(tbl >> (idx*bit_width));
val &= (1u << bit_width)-1;
return val;
}
// extract a range of bits and expand to 8 bits (by replicating
// MS bits - see http://www.mindcontrol.org/~hplus/graphics/expand-bits.html ;
// this is also the algorithm used by graphics cards when decompressing S3TC).
// used to convert 565 to 32bpp RGB.
static inline uint unpack_to_8(u16 c, uint bits_below, uint num_bits)
{
const uint num_filler_bits = 8-num_bits;
const uint field = bits(c, bits_below, bits_below+num_bits-1);
const uint filler = field >> (8-num_bits);
return (field << num_filler_bits) | filler;
}
// for efficiency, we precalculate as much as possible about a block
// and store it here.
struct S3tcBlock
{
// the 4 color choices for each pixel (RGBA)
uint c[4][4]; // c[i][RGBA_component]
// (DXT5 only) the 8 alpha choices
u8 dxt5_a_tbl[8];
// alpha block; interpretation depends on dxt.
u64 a_bits;
// table of 2-bit color selectors
u32 c_selectors;
};
static void precalc_alpha(int dxt, const u8* a_block, S3tcBlock* b)
{
// read block contents
const uint a0 = a_block[0], a1 = a_block[1];
b->a_bits = read_le64(a_block); // see below
if(dxt == 5)
{
// skip a0,a1 bytes (data is little endian)
b->a_bits >>= 16;
const bool is_dxt5_special_combination = (a0 <= a1);
u8* a = b->dxt5_a_tbl; // shorthand
if(is_dxt5_special_combination)
{
a[0] = a0;
a[1] = a1;
a[2] = (4*a0 + 1*a1 + 2)/5;
a[3] = (3*a0 + 2*a1 + 2)/5;
a[4] = (2*a0 + 3*a1 + 2)/5;
a[5] = (1*a0 + 4*a1 + 2)/5;
a[6] = 0;
a[7] = 255;
}
else
{
a[0] = a0;
a[1] = a1;
a[2] = (6*a0 + 1*a1 + 3)/7;
a[3] = (5*a0 + 2*a1 + 3)/7;
a[4] = (4*a0 + 3*a1 + 3)/7;
a[5] = (3*a0 + 4*a1 + 3)/7;
a[6] = (2*a0 + 5*a1 + 3)/7;
a[7] = (1*a0 + 6*a1 + 3)/7;
}
}
}
static void precalc_color(int dxt, const u8* c_block, S3tcBlock* b)
{
// read block contents
// .. S3TC reference colors (565 format). the color table is generated
// from some combination of these, depending on their ordering.
u16 rc[2];
for(int i = 0; i < 2; i++)
rc[i] = read_le16(c_block + 2*i);
// .. table of 2-bit color selectors
b->c_selectors = read_le32(c_block+4);
const bool is_dxt1_special_combination =
(dxt == 1 || dxt == DXT1A) && rc[0] <= rc[1];
// c0 and c1 are the values of rc[], converted to 32bpp
for(int i = 0; i < 2; i++)
{
b->c[i][R] = unpack_to_8(rc[i], 11, 5);
b->c[i][G] = unpack_to_8(rc[i], 5, 6);
b->c[i][B] = unpack_to_8(rc[i], 0, 5);
}
// c2 and c3 are combinations of c0 and c1:
if(is_dxt1_special_combination)
{
mix_avg(b->c[2], b->c[0], b->c[1]); // c2 = (c0+c1)/2
for(int i = 0; i < 3; i++) b->c[3][i] = 0; // c3 = black
b->c[3][A] = (dxt == DXT1A)? 0 : 255; // (transparent iff DXT1a)
}
else
{
mix_2_3(b->c[2], b->c[0], b->c[1]); // c2 = 2/3*c0 + 1/3*c1
mix_2_3(b->c[3], b->c[1], b->c[0]); // c3 = 1/3*c0 + 2/3*c1
}
}
static void block_precalc(int dxt, const u8* block, S3tcBlock* b)
{
// (careful, 'dxt != 1' doesn't work)
const u8* a_block = block;
const u8* c_block = (dxt == 3 || dxt == 5)? block+8 : block;
precalc_alpha(dxt, a_block, b);
precalc_color(dxt, c_block, b);
}
static void write_pixel(int dxt, uint pixel_idx, const S3tcBlock* b, u8* out)
{
debug_assert(pixel_idx < 16);
// pixel index -> color selector (2 bit) -> color
const uint c_selector = access_bit_tbl(b->c_selectors, pixel_idx, 2);
const uint* c = b->c[c_selector];
for(int i = 0; i < 3; i++)
out[i] = c[i];
// if no alpha, done
if(dxt == 1)
return;
uint a;
if(dxt == 3)
{
// table of 4-bit alpha entries
a = access_bit_tbl64(b->a_bits, pixel_idx, 4);
a |= a << 4; // expand to 8 bits (replicate high into low!)
}
else if(dxt == 5)
{
// pixel index -> alpha selector (3 bit) -> alpha
const uint a_selector = access_bit_tbl64(b->a_bits, pixel_idx, 3);
a = b->dxt5_a_tbl[a_selector];
}
// (dxt == DXT1A)
else
a = c[A];
out[A] = a;
}
// in ogl_emulate_dds: debug_assert(compressedimageSize == blocks * (dxt1? 8 : 16));
// note: this code is grossly inefficient (mostly due to splitting it up
// into function calls for readability). that's because it's only used to
// emulate hardware S3TC support - if that isn't available, everything will
// be dog-slow anyway due to increased vmem usage.
static int dds_decompress(Tex* t)
{
int dxt = t->flags & TEX_DXT;
debug_assert(dxt == 1 || dxt == 3 || dxt == 5);
if(t->flags & TEX_ALPHA)
dxt = DXT1A;
// due to the above, dxt == 1 is the only non-alpha case.
// note: adding or stripping alpha channels during transform is not
// our job; we merely output the same pixel format as given
// (tex.cpp's plain transform could cover it, if ever needed).
const uint bpp = (dxt != 1)? 32 : 24;
// note: 1x1 images are legitimate (e.g. in mipmaps). they report their
// width as such for glTexImage, but the S3TC data is padded to
// 4x4 pixel block boundaries.
const uint blocks_w = (uint)(round_up(t->w, 4) / 4);
const uint blocks_h = (uint)(round_up(t->h, 4) / 4);
const uint blocks = blocks_w * blocks_h;
const size_t img_size = blocks * 16 * bpp/8;
Handle hm;
void* img_data = mem_alloc(img_size, 64*KiB, 0, &hm);
if(!img_data)
return ERR_NO_MEM;
const u8* s3tc_data = (const u8*)tex_get_data(t);
// note: do not use tex_img_size! we must take into account padding
// to 4x4 blocks, which is relevant for high mipmap levels (e.g. 2x2).
const size_t s3tc_size = blocks * 16 * t->bpp/8;
for(uint block_y = 0; block_y < blocks_h; block_y++)
for(uint block_x = 0; block_x < blocks_w; block_x++)
{
S3tcBlock b;
block_precalc(dxt, s3tc_data, &b);
s3tc_data += 16 * t->bpp/8;
uint pixel_idx = 0;
for(int y = 0; y < 4; y++)
{
u8* out = (u8*)img_data + ((block_y*4+y)*blocks_w*4 + block_x*4) * bpp/8;
for(int x = 0; x < 4; x++)
{
write_pixel(dxt, pixel_idx, &b, out);
out += bpp/8;
pixel_idx++;
}
}
} // for block_x
debug_assert(tex_get_data(t) == s3tc_data - s3tc_size);
mem_free_h(t->hm);
t->hm = hm;
t->ofs = 0;
t->bpp = bpp;
t->flags &= ~TEX_DXT;
return 0;
}
static int dds_transform(Tex* t, uint transforms)
{
const int is_dxt = t->flags & TEX_DXT, transform_dxt = transforms & TEX_DXT;
// requesting decompression
if(is_dxt && transform_dxt)
return dds_decompress(t);
// both are DXT (unsupported; there are no flags we can change while
// compressed) or requesting compression (not implemented) or
// both not DXT (nothing we can do) - bail.
else
return TEX_CODEC_CANNOT_HANDLE;
}
static bool dds_is_hdr(const u8* file)
{
return *(u32*)file == FOURCC('D','D','S',' ');
}
static bool dds_is_ext(const char* ext)
{
return !stricmp(ext, "dds");
}
static size_t dds_hdr_size(const u8* UNUSED(file))
{
return 4+sizeof(DDSURFACEDESC2);
}
static int dds_decode(DynArray* da, Tex* t)
{
u8* file = da->base;
const DDSURFACEDESC2* hdr = (const DDSURFACEDESC2*)(file+4);
const u32 sd_size = read_le32(&hdr->dwSize);
const u32 sd_flags = read_le32(&hdr->dwFlags);
const u32 h = read_le32(&hdr->dwHeight);
const u32 w = read_le32(&hdr->dwWidth);
u32 mipmaps = read_le32(&hdr->dwMipMapCount);
const u32 pf_size = read_le32(&hdr->ddpfPixelFormat.dwSize);
const u32 pf_flags = read_le32(&hdr->ddpfPixelFormat.dwFlags);
const u32 fourcc = hdr->ddpfPixelFormat.dwFourCC;
// compared against FOURCC, which takes care of endian conversion.
// we'll use these fields; make sure they're present below.
// note: we can't guess image dimensions if not specified -
// the image isn't necessarily square.
const u32 sd_req_flags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_PIXELFORMAT;
// make sure fields that aren't indicated as valid are zeroed.
if(!(sd_flags & DDSD_MIPMAPCOUNT))
mipmaps = 0;
// determine flags and bpp.
// we store DXT format (one of {1,3,5}) in flags & TEX_DXT.
//
// unfortunately there are problems with some DDS headers:
// - DXTex doesn't set the required dwPitchOrLinearSize field -
// MS can't even write out their own file format correctly. *sigh*
// it's needed by OpenGL, so we calculate it from w, h, and bpp.
// - pf_flags & DDPF_ALPHAPIXELS can only be used to check for
// DXT1a (the only way to detect it); we have observed some DXT3 files
// that don't have it set. grr
int bpp = 0;
int flags = 0;
switch(fourcc)
{
case FOURCC('D','X','T','1'):
bpp = 4;
flags |= 1;
if(pf_flags & DDPF_ALPHAPIXELS)
flags |= TEX_ALPHA;
break;
case FOURCC('D','X','T','3'):
bpp = 8;
flags |= 3;
flags |= TEX_ALPHA;
break;
case FOURCC('D','X','T','5'):
bpp = 8;
flags |= 5;
flags |= TEX_ALPHA;
break;
}
if(mipmaps)
flags |= TEX_MIPMAPS;
// sanity checks
// .. dimensions not padded to S3TC block size
if(w % 4 || h % 4)
return ERR_TEX_INVALID_SIZE;
// .. unknown FOURCC
if((flags & TEX_DXT) == 0)
return ERR_UNKNOWN_FORMAT;
// .. missing required field(s)
if((sd_flags & sd_req_flags) != sd_req_flags)
return ERR_INCOMPLETE_HEADER;
if(sizeof(DDPIXELFORMAT) != pf_size)
return ERR_CORRUPTED;
if(sizeof(DDSURFACEDESC2) != sd_size)
return ERR_CORRUPTED;
t->w = w;
t->h = h;
t->bpp = bpp;
t->flags = flags;
return 0;
}
static int dds_encode(Tex* UNUSED(t), DynArray* UNUSED(da))
{
// note: do not return ERR_NOT_IMPLEMENTED et al. because that would
// break tex_write (which assumes either this, 0 or errors are returned).
return TEX_CODEC_CANNOT_HANDLE;
}
TEX_CODEC_REGISTER(dds);