1
0
forked from 0ad/0ad
0ad/source/renderer/Renderer.cpp
2019-10-03 18:51:40 +00:00

1990 lines
55 KiB
C++

/* Copyright (C) 2019 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* higher level interface on top of OpenGL to render basic objects:
* terrain, models, sprites, particles etc.
*/
#include "precompiled.h"
#include <map>
#include <set>
#include <algorithm>
#include <boost/algorithm/string.hpp>
#include "Renderer.h"
#include "lib/bits.h" // is_pow2
#include "lib/res/graphics/ogl_tex.h"
#include "lib/allocators/shared_ptr.h"
#include "maths/Matrix3D.h"
#include "maths/MathUtil.h"
#include "ps/CLogger.h"
#include "ps/ConfigDB.h"
#include "ps/Game.h"
#include "ps/Profile.h"
#include "ps/Filesystem.h"
#include "ps/World.h"
#include "ps/Loader.h"
#include "ps/ProfileViewer.h"
#include "graphics/Camera.h"
#include "graphics/Decal.h"
#include "graphics/FontManager.h"
#include "graphics/GameView.h"
#include "graphics/LightEnv.h"
#include "graphics/LOSTexture.h"
#include "graphics/MaterialManager.h"
#include "graphics/Model.h"
#include "graphics/ModelDef.h"
#include "graphics/ParticleManager.h"
#include "graphics/Patch.h"
#include "graphics/ShaderManager.h"
#include "graphics/Terrain.h"
#include "graphics/Texture.h"
#include "graphics/TextureManager.h"
#include "renderer/HWLightingModelRenderer.h"
#include "renderer/InstancingModelRenderer.h"
#include "renderer/ModelRenderer.h"
#include "renderer/OverlayRenderer.h"
#include "renderer/ParticleRenderer.h"
#include "renderer/PostprocManager.h"
#include "renderer/RenderingOptions.h"
#include "renderer/RenderModifiers.h"
#include "renderer/ShadowMap.h"
#include "renderer/SilhouetteRenderer.h"
#include "renderer/SkyManager.h"
#include "renderer/TerrainOverlay.h"
#include "renderer/TerrainRenderer.h"
#include "renderer/TimeManager.h"
#include "renderer/VertexBufferManager.h"
#include "renderer/WaterManager.h"
#include "scriptinterface/ScriptInterface.h"
struct SScreenRect
{
GLint x1, y1, x2, y2;
};
///////////////////////////////////////////////////////////////////////////////////
// CRendererStatsTable - Profile display of rendering stats
/**
* Class CRendererStatsTable: Implementation of AbstractProfileTable to
* display the renderer stats in-game.
*
* Accesses CRenderer::m_Stats by keeping the reference passed to the
* constructor.
*/
class CRendererStatsTable : public AbstractProfileTable
{
NONCOPYABLE(CRendererStatsTable);
public:
CRendererStatsTable(const CRenderer::Stats& st);
// Implementation of AbstractProfileTable interface
CStr GetName();
CStr GetTitle();
size_t GetNumberRows();
const std::vector<ProfileColumn>& GetColumns();
CStr GetCellText(size_t row, size_t col);
AbstractProfileTable* GetChild(size_t row);
private:
/// Reference to the renderer singleton's stats
const CRenderer::Stats& Stats;
/// Column descriptions
std::vector<ProfileColumn> columnDescriptions;
enum {
Row_DrawCalls = 0,
Row_TerrainTris,
Row_WaterTris,
Row_ModelTris,
Row_OverlayTris,
Row_BlendSplats,
Row_Particles,
Row_VBReserved,
Row_VBAllocated,
Row_TextureMemory,
Row_ShadersLoaded,
// Must be last to count number of rows
NumberRows
};
};
// Construction
CRendererStatsTable::CRendererStatsTable(const CRenderer::Stats& st)
: Stats(st)
{
columnDescriptions.push_back(ProfileColumn("Name", 230));
columnDescriptions.push_back(ProfileColumn("Value", 100));
}
// Implementation of AbstractProfileTable interface
CStr CRendererStatsTable::GetName()
{
return "renderer";
}
CStr CRendererStatsTable::GetTitle()
{
return "Renderer statistics";
}
size_t CRendererStatsTable::GetNumberRows()
{
return NumberRows;
}
const std::vector<ProfileColumn>& CRendererStatsTable::GetColumns()
{
return columnDescriptions;
}
CStr CRendererStatsTable::GetCellText(size_t row, size_t col)
{
char buf[256];
switch(row)
{
case Row_DrawCalls:
if (col == 0)
return "# draw calls";
sprintf_s(buf, sizeof(buf), "%lu", (unsigned long)Stats.m_DrawCalls);
return buf;
case Row_TerrainTris:
if (col == 0)
return "# terrain tris";
sprintf_s(buf, sizeof(buf), "%lu", (unsigned long)Stats.m_TerrainTris);
return buf;
case Row_WaterTris:
if (col == 0)
return "# water tris";
sprintf_s(buf, sizeof(buf), "%lu", (unsigned long)Stats.m_WaterTris);
return buf;
case Row_ModelTris:
if (col == 0)
return "# model tris";
sprintf_s(buf, sizeof(buf), "%lu", (unsigned long)Stats.m_ModelTris);
return buf;
case Row_OverlayTris:
if (col == 0)
return "# overlay tris";
sprintf_s(buf, sizeof(buf), "%lu", (unsigned long)Stats.m_OverlayTris);
return buf;
case Row_BlendSplats:
if (col == 0)
return "# blend splats";
sprintf_s(buf, sizeof(buf), "%lu", (unsigned long)Stats.m_BlendSplats);
return buf;
case Row_Particles:
if (col == 0)
return "# particles";
sprintf_s(buf, sizeof(buf), "%lu", (unsigned long)Stats.m_Particles);
return buf;
case Row_VBReserved:
if (col == 0)
return "VB reserved";
sprintf_s(buf, sizeof(buf), "%lu kB", (unsigned long)g_VBMan.GetBytesReserved() / 1024);
return buf;
case Row_VBAllocated:
if (col == 0)
return "VB allocated";
sprintf_s(buf, sizeof(buf), "%lu kB", (unsigned long)g_VBMan.GetBytesAllocated() / 1024);
return buf;
case Row_TextureMemory:
if (col == 0)
return "textures uploaded";
sprintf_s(buf, sizeof(buf), "%lu kB", (unsigned long)g_Renderer.GetTextureManager().GetBytesUploaded() / 1024);
return buf;
case Row_ShadersLoaded:
if (col == 0)
return "shader effects loaded";
sprintf_s(buf, sizeof(buf), "%lu", (unsigned long)g_Renderer.GetShaderManager().GetNumEffectsLoaded());
return buf;
default:
return "???";
}
}
AbstractProfileTable* CRendererStatsTable::GetChild(size_t UNUSED(row))
{
return 0;
}
///////////////////////////////////////////////////////////////////////////////////
// CRenderer implementation
/**
* Struct CRendererInternals: Truly hide data that is supposed to be hidden
* in this structure so it won't even appear in header files.
*/
struct CRendererInternals
{
NONCOPYABLE(CRendererInternals);
public:
/// true if CRenderer::Open has been called
bool IsOpen;
/// true if shaders need to be reloaded
bool ShadersDirty;
/// Table to display renderer stats in-game via profile system
CRendererStatsTable profileTable;
/// Shader manager
CShaderManager shaderManager;
/// Water manager
WaterManager waterManager;
/// Sky manager
SkyManager skyManager;
/// Texture manager
CTextureManager textureManager;
/// Terrain renderer
TerrainRenderer terrainRenderer;
/// Overlay renderer
OverlayRenderer overlayRenderer;
/// Particle manager
CParticleManager particleManager;
/// Particle renderer
ParticleRenderer particleRenderer;
/// Material manager
CMaterialManager materialManager;
/// Time manager
CTimeManager timeManager;
/// Shadow map
ShadowMap shadow;
/// Postprocessing effect manager
CPostprocManager postprocManager;
CFontManager fontManager;
SilhouetteRenderer silhouetteRenderer;
/// Various model renderers
struct Models
{
// NOTE: The current renderer design (with ModelRenderer, ModelVertexRenderer,
// RenderModifier, etc) is mostly a relic of an older design that implemented
// the different materials and rendering modes through extensive subclassing
// and hooking objects together in various combinations.
// The new design uses the CShaderManager API to abstract away the details
// of rendering, and uses a data-driven approach to materials, so there are
// now a small number of generic subclasses instead of many specialised subclasses,
// but most of the old infrastructure hasn't been refactored out yet and leads to
// some unwanted complexity.
// Submitted models are split on two axes:
// - Normal vs Transp[arent] - alpha-blended models are stored in a separate
// list so we can draw them above/below the alpha-blended water plane correctly
// - Skinned vs Unskinned - with hardware lighting we don't need to
// duplicate mesh data per model instance (except for skinned models),
// so non-skinned models get different ModelVertexRenderers
ModelRendererPtr NormalSkinned;
ModelRendererPtr NormalUnskinned; // == NormalSkinned if unskinned shader instancing not supported
ModelRendererPtr TranspSkinned;
ModelRendererPtr TranspUnskinned; // == TranspSkinned if unskinned shader instancing not supported
ModelVertexRendererPtr VertexRendererShader;
ModelVertexRendererPtr VertexInstancingShader;
ModelVertexRendererPtr VertexGPUSkinningShader;
LitRenderModifierPtr ModShader;
} Model;
CShaderDefines globalContext;
CRendererInternals() :
IsOpen(false), ShadersDirty(true), profileTable(g_Renderer.m_Stats), textureManager(g_VFS, false, false)
{
}
/**
* Load the OpenGL projection and modelview matrices and the viewport according
* to the given camera.
*/
void SetOpenGLCamera(const CCamera& camera)
{
CMatrix3D view;
camera.m_Orientation.GetInverse(view);
const CMatrix3D& proj = camera.GetProjection();
#if CONFIG2_GLES
#warning TODO: fix CRenderer camera handling for GLES (do not use global matrixes)
#else
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&proj._11);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&view._11);
#endif
g_Renderer.SetViewport(camera.GetViewPort());
}
/**
* Renders all non-alpha-blended models with the given context.
*/
void CallModelRenderers(const CShaderDefines& context, int cullGroup, int flags)
{
CShaderDefines contextSkinned = context;
if (g_RenderingOptions.GetGPUSkinning())
{
contextSkinned.Add(str_USE_INSTANCING, str_1);
contextSkinned.Add(str_USE_GPU_SKINNING, str_1);
}
Model.NormalSkinned->Render(Model.ModShader, contextSkinned, cullGroup, flags);
if (Model.NormalUnskinned != Model.NormalSkinned)
{
CShaderDefines contextUnskinned = context;
contextUnskinned.Add(str_USE_INSTANCING, str_1);
Model.NormalUnskinned->Render(Model.ModShader, contextUnskinned, cullGroup, flags);
}
}
/**
* Renders all alpha-blended models with the given context.
*/
void CallTranspModelRenderers(const CShaderDefines& context, int cullGroup, int flags)
{
CShaderDefines contextSkinned = context;
if (g_RenderingOptions.GetGPUSkinning())
{
contextSkinned.Add(str_USE_INSTANCING, str_1);
contextSkinned.Add(str_USE_GPU_SKINNING, str_1);
}
Model.TranspSkinned->Render(Model.ModShader, contextSkinned, cullGroup, flags);
if (Model.TranspUnskinned != Model.TranspSkinned)
{
CShaderDefines contextUnskinned = context;
contextUnskinned.Add(str_USE_INSTANCING, str_1);
Model.TranspUnskinned->Render(Model.ModShader, contextUnskinned, cullGroup, flags);
}
}
};
///////////////////////////////////////////////////////////////////////////////////
// CRenderer constructor
CRenderer::CRenderer()
{
m = new CRendererInternals;
m_WaterManager = &m->waterManager;
m_SkyManager = &m->skyManager;
g_ProfileViewer.AddRootTable(&m->profileTable);
m_Width = 0;
m_Height = 0;
m_TerrainRenderMode = SOLID;
m_WaterRenderMode = SOLID;
m_ModelRenderMode = SOLID;
m_ClearColor[0] = m_ClearColor[1] = m_ClearColor[2] = m_ClearColor[3] = 0;
m_DisplayTerrainPriorities = false;
m_SkipSubmit = false;
CStr skystring = "0 0 0";
CColor skycolor;
CFG_GET_VAL("skycolor", skystring);
if (skycolor.ParseString(skystring, 255.f))
SetClearColor(skycolor.AsSColor4ub());
#if CONFIG2_GLES
// Override config option since GLES only supports GLSL
g_RenderingOptions.GetPreferGLSL() = true;
#endif
m_ShadowZBias = 0.02f;
m_ShadowMapSize = 0;
m_LightEnv = NULL;
m_CurrentScene = NULL;
m_hCompositeAlphaMap = 0;
m_Stats.Reset();
RegisterFileReloadFunc(ReloadChangedFileCB, this);
}
///////////////////////////////////////////////////////////////////////////////////
// CRenderer destructor
CRenderer::~CRenderer()
{
UnregisterFileReloadFunc(ReloadChangedFileCB, this);
// we no longer UnloadAlphaMaps / UnloadWaterTextures here -
// that is the responsibility of the module that asked for
// them to be loaded (i.e. CGameView).
delete m;
}
///////////////////////////////////////////////////////////////////////////////////
// EnumCaps: build card cap bits
void CRenderer::EnumCaps()
{
// assume support for nothing
m_Caps.m_VBO = false;
m_Caps.m_ARBProgram = false;
m_Caps.m_ARBProgramShadow = false;
m_Caps.m_VertexShader = false;
m_Caps.m_FragmentShader = false;
m_Caps.m_Shadows = false;
m_Caps.m_PrettyWater = false;
// now start querying extensions
if (!g_RenderingOptions.GetNoVBO() && ogl_HaveExtension("GL_ARB_vertex_buffer_object"))
m_Caps.m_VBO = true;
if (0 == ogl_HaveExtensions(0, "GL_ARB_vertex_program", "GL_ARB_fragment_program", NULL))
{
m_Caps.m_ARBProgram = true;
if (ogl_HaveExtension("GL_ARB_fragment_program_shadow"))
m_Caps.m_ARBProgramShadow = true;
}
if (0 == ogl_HaveExtensions(0, "GL_ARB_shader_objects", "GL_ARB_shading_language_100", NULL))
{
if (ogl_HaveExtension("GL_ARB_vertex_shader"))
m_Caps.m_VertexShader = true;
if (ogl_HaveExtension("GL_ARB_fragment_shader"))
m_Caps.m_FragmentShader = true;
}
#if CONFIG2_GLES
m_Caps.m_Shadows = true;
#else
if (0 == ogl_HaveExtensions(0, "GL_ARB_shadow", "GL_ARB_depth_texture", "GL_EXT_framebuffer_object", NULL))
{
if (ogl_max_tex_units >= 4)
m_Caps.m_Shadows = true;
}
#endif
#if CONFIG2_GLES
m_Caps.m_PrettyWater = true;
#else
if (0 == ogl_HaveExtensions(0, "GL_ARB_vertex_shader", "GL_ARB_fragment_shader", "GL_EXT_framebuffer_object", NULL))
m_Caps.m_PrettyWater = true;
#endif
}
void CRenderer::RecomputeSystemShaderDefines()
{
CShaderDefines defines;
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER && m_Caps.m_ARBProgram)
defines.Add(str_SYS_HAS_ARB, str_1);
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER && m_Caps.m_VertexShader && m_Caps.m_FragmentShader)
defines.Add(str_SYS_HAS_GLSL, str_1);
if (g_RenderingOptions.GetPreferGLSL())
defines.Add(str_SYS_PREFER_GLSL, str_1);
m_SystemShaderDefines = defines;
}
void CRenderer::ReloadShaders()
{
ENSURE(m->IsOpen);
m->globalContext = m_SystemShaderDefines;
if (m_Caps.m_Shadows && g_RenderingOptions.GetShadows())
{
m->globalContext.Add(str_USE_SHADOW, str_1);
if (m_Caps.m_ARBProgramShadow && g_RenderingOptions.GetARBProgramShadow())
m->globalContext.Add(str_USE_FP_SHADOW, str_1);
if (g_RenderingOptions.GetShadowPCF())
m->globalContext.Add(str_USE_SHADOW_PCF, str_1);
#if !CONFIG2_GLES
m->globalContext.Add(str_USE_SHADOW_SAMPLER, str_1);
#endif
}
if (g_RenderingOptions.GetPreferGLSL() && g_RenderingOptions.GetFog())
m->globalContext.Add(str_USE_FOG, str_1);
m->Model.ModShader = LitRenderModifierPtr(new ShaderRenderModifier());
bool cpuLighting = (g_RenderingOptions.GetRenderPath() == RenderPath::FIXED);
m->Model.VertexRendererShader = ModelVertexRendererPtr(new ShaderModelVertexRenderer(cpuLighting));
m->Model.VertexInstancingShader = ModelVertexRendererPtr(new InstancingModelRenderer(false, g_RenderingOptions.GetPreferGLSL()));
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER && g_RenderingOptions.GetGPUSkinning()) // TODO: should check caps and GLSL etc too
{
m->Model.VertexGPUSkinningShader = ModelVertexRendererPtr(new InstancingModelRenderer(true, g_RenderingOptions.GetPreferGLSL()));
m->Model.NormalSkinned = ModelRendererPtr(new ShaderModelRenderer(m->Model.VertexGPUSkinningShader));
m->Model.TranspSkinned = ModelRendererPtr(new ShaderModelRenderer(m->Model.VertexGPUSkinningShader));
}
else
{
m->Model.VertexGPUSkinningShader.reset();
m->Model.NormalSkinned = ModelRendererPtr(new ShaderModelRenderer(m->Model.VertexRendererShader));
m->Model.TranspSkinned = ModelRendererPtr(new ShaderModelRenderer(m->Model.VertexRendererShader));
}
// Use instancing renderers in shader mode
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
{
m->Model.NormalUnskinned = ModelRendererPtr(new ShaderModelRenderer(m->Model.VertexInstancingShader));
m->Model.TranspUnskinned = ModelRendererPtr(new ShaderModelRenderer(m->Model.VertexInstancingShader));
}
else
{
m->Model.NormalUnskinned = m->Model.NormalSkinned;
m->Model.TranspUnskinned = m->Model.TranspSkinned;
}
m->ShadersDirty = false;
}
bool CRenderer::Open(int width, int height)
{
m->IsOpen = true;
// Must query card capabilities before creating renderers that depend
// on card capabilities.
EnumCaps();
// Dimensions
m_Width = width;
m_Height = height;
// set packing parameters
glPixelStorei(GL_PACK_ALIGNMENT,1);
glPixelStorei(GL_UNPACK_ALIGNMENT,1);
// setup default state
glDepthFunc(GL_LEQUAL);
glEnable(GL_DEPTH_TEST);
glCullFace(GL_BACK);
glFrontFace(GL_CCW);
glEnable(GL_CULL_FACE);
GLint bits;
glGetIntegerv(GL_DEPTH_BITS,&bits);
LOGMESSAGE("CRenderer::Open: depth bits %d",bits);
glGetIntegerv(GL_STENCIL_BITS,&bits);
LOGMESSAGE("CRenderer::Open: stencil bits %d",bits);
glGetIntegerv(GL_ALPHA_BITS,&bits);
LOGMESSAGE("CRenderer::Open: alpha bits %d",bits);
// Validate the currently selected render path
SetRenderPath(g_RenderingOptions.GetRenderPath());
RecomputeSystemShaderDefines();
// Let component renderers perform one-time initialization after graphics capabilities and
// the shader path have been determined.
m->overlayRenderer.Initialize();
if (g_RenderingOptions.GetPostProc())
m->postprocManager.Initialize();
return true;
}
// resize renderer view
void CRenderer::Resize(int width, int height)
{
// need to recreate the shadow map object to resize the shadow texture
m->shadow.RecreateTexture();
m_Width = width;
m_Height = height;
m->postprocManager.Resize();
m_WaterManager->Resize();
}
//////////////////////////////////////////////////////////////////////////////////////////
// SetRenderPath: Select the preferred render path.
// This may only be called before Open(), because the layout of vertex arrays and other
// data may depend on the chosen render path.
void CRenderer::SetRenderPath(RenderPath rp)
{
if (!m->IsOpen)
{
// Delay until Open() is called.
return;
}
// Renderer has been opened, so validate the selected renderpath
if (rp == RenderPath::DEFAULT)
{
if (m_Caps.m_ARBProgram || (m_Caps.m_VertexShader && m_Caps.m_FragmentShader && g_RenderingOptions.GetPreferGLSL()))
rp = RenderPath::SHADER;
else
rp = RenderPath::FIXED;
}
if (rp == RenderPath::SHADER)
{
if (!(m_Caps.m_ARBProgram || (m_Caps.m_VertexShader && m_Caps.m_FragmentShader && g_RenderingOptions.GetPreferGLSL())))
{
LOGWARNING("Falling back to fixed function\n");
rp = RenderPath::FIXED;
}
}
// TODO: remove this once capabilities have been properly extracted and the above checks have been moved elsewhere.
g_RenderingOptions.m_RenderPath = rp;
MakeShadersDirty();
RecomputeSystemShaderDefines();
// We might need to regenerate some render data after changing path
if (g_Game)
g_Game->GetWorld()->GetTerrain()->MakeDirty(RENDERDATA_UPDATE_COLOR);
}
//////////////////////////////////////////////////////////////////////////////////////////
// BeginFrame: signal frame start
void CRenderer::BeginFrame()
{
PROFILE("begin frame");
// zero out all the per-frame stats
m_Stats.Reset();
// choose model renderers for this frame
if (m->ShadersDirty)
ReloadShaders();
m->Model.ModShader->SetShadowMap(&m->shadow);
m->Model.ModShader->SetLightEnv(m_LightEnv);
}
//////////////////////////////////////////////////////////////////////////////////////////
void CRenderer::SetSimulation(CSimulation2* simulation)
{
// set current simulation context for terrain renderer
m->terrainRenderer.SetSimulation(simulation);
}
// SetClearColor: set color used to clear screen in BeginFrame()
void CRenderer::SetClearColor(SColor4ub color)
{
m_ClearColor[0] = float(color.R) / 255.0f;
m_ClearColor[1] = float(color.G) / 255.0f;
m_ClearColor[2] = float(color.B) / 255.0f;
m_ClearColor[3] = float(color.A) / 255.0f;
}
void CRenderer::RenderShadowMap(const CShaderDefines& context)
{
PROFILE3_GPU("shadow map");
m->shadow.BeginRender();
{
PROFILE("render patches");
glCullFace(GL_FRONT);
glEnable(GL_CULL_FACE);
m->terrainRenderer.RenderPatches(CULL_SHADOWS);
glCullFace(GL_BACK);
}
CShaderDefines contextCast = context;
contextCast.Add(str_MODE_SHADOWCAST, str_1);
{
PROFILE("render models");
m->CallModelRenderers(contextCast, CULL_SHADOWS, MODELFLAG_CASTSHADOWS);
}
{
PROFILE("render transparent models");
// disable face-culling for two-sided models
glDisable(GL_CULL_FACE);
m->CallTranspModelRenderers(contextCast, CULL_SHADOWS, MODELFLAG_CASTSHADOWS);
glEnable(GL_CULL_FACE);
}
m->shadow.EndRender();
m->SetOpenGLCamera(m_ViewCamera);
}
void CRenderer::RenderPatches(const CShaderDefines& context, int cullGroup)
{
PROFILE3_GPU("patches");
#if CONFIG2_GLES
#warning TODO: implement wireface/edged rendering mode GLES
#else
// switch on wireframe if we need it
if (m_TerrainRenderMode == WIREFRAME)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
#endif
// render all the patches, including blend pass
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
m->terrainRenderer.RenderTerrainShader(context, cullGroup, (m_Caps.m_Shadows && g_RenderingOptions.GetShadows()) ? &m->shadow : 0);
else
m->terrainRenderer.RenderTerrain(cullGroup);
#if !CONFIG2_GLES
if (m_TerrainRenderMode == WIREFRAME)
{
// switch wireframe off again
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
else if (m_TerrainRenderMode == EDGED_FACES)
{
// edged faces: need to make a second pass over the data:
// first switch on wireframe
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
// setup some renderstate ..
pglActiveTextureARB(GL_TEXTURE0);
glDisable(GL_TEXTURE_2D);
glColor3f(0.5f, 0.5f, 1.0f);
glLineWidth(2.0f);
// render tiles edges
m->terrainRenderer.RenderPatches(cullGroup);
// set color for outline
glColor3f(0, 0, 1);
glLineWidth(4.0f);
// render outline of each patch
m->terrainRenderer.RenderOutlines(cullGroup);
// .. and restore the renderstates
glLineWidth(1.0f);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
#endif
}
void CRenderer::RenderModels(const CShaderDefines& context, int cullGroup)
{
PROFILE3_GPU("models");
int flags = 0;
#if !CONFIG2_GLES
if (m_ModelRenderMode == WIREFRAME)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
#endif
m->CallModelRenderers(context, cullGroup, flags);
#if !CONFIG2_GLES
if (m_ModelRenderMode == WIREFRAME)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
else if (m_ModelRenderMode == EDGED_FACES)
{
CShaderDefines contextWireframe = context;
contextWireframe.Add(str_MODE_WIREFRAME, str_1);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glDisable(GL_TEXTURE_2D);
m->CallModelRenderers(contextWireframe, cullGroup, flags);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
#endif
}
void CRenderer::RenderTransparentModels(const CShaderDefines& context, int cullGroup, ETransparentMode transparentMode, bool disableFaceCulling)
{
PROFILE3_GPU("transparent models");
int flags = 0;
#if !CONFIG2_GLES
// switch on wireframe if we need it
if (m_ModelRenderMode == WIREFRAME)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
}
#endif
// disable face culling for two-sided models in sub-renders
if (disableFaceCulling)
glDisable(GL_CULL_FACE);
CShaderDefines contextOpaque = context;
contextOpaque.Add(str_ALPHABLEND_PASS_OPAQUE, str_1);
CShaderDefines contextBlend = context;
contextBlend.Add(str_ALPHABLEND_PASS_BLEND, str_1);
if (transparentMode == TRANSPARENT || transparentMode == TRANSPARENT_OPAQUE)
m->CallTranspModelRenderers(contextOpaque, cullGroup, flags);
if (transparentMode == TRANSPARENT || transparentMode == TRANSPARENT_BLEND)
m->CallTranspModelRenderers(contextBlend, cullGroup, flags);
if (disableFaceCulling)
glEnable(GL_CULL_FACE);
#if !CONFIG2_GLES
if (m_ModelRenderMode == WIREFRAME)
{
// switch wireframe off again
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
else if (m_ModelRenderMode == EDGED_FACES)
{
CShaderDefines contextWireframe = contextOpaque;
contextWireframe.Add(str_MODE_WIREFRAME, str_1);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glDisable(GL_TEXTURE_2D);
m->CallTranspModelRenderers(contextWireframe, cullGroup, flags);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// SetObliqueFrustumClipping: change the near plane to the given clip plane (in world space)
// Based on code from Game Programming Gems 5, from http://www.terathon.com/code/oblique.html
// - worldPlane is a clip plane in world space (worldPlane.Dot(v) >= 0 for any vector v passing the clipping test)
void CRenderer::SetObliqueFrustumClipping(CCamera& camera, const CVector4D& worldPlane) const
{
// First, we'll convert the given clip plane to camera space, then we'll
// Get the view matrix and normal matrix (top 3x3 part of view matrix)
CMatrix3D normalMatrix = camera.m_Orientation.GetTranspose();
CVector4D camPlane = normalMatrix.Transform(worldPlane);
CMatrix3D matrix = camera.GetProjection();
// Calculate the clip-space corner point opposite the clipping plane
// as (sgn(camPlane.x), sgn(camPlane.y), 1, 1) and
// transform it into camera space by multiplying it
// by the inverse of the projection matrix
CVector4D q;
q.X = (sgn(camPlane.X) - matrix[8]/matrix[11]) / matrix[0];
q.Y = (sgn(camPlane.Y) - matrix[9]/matrix[11]) / matrix[5];
q.Z = 1.0f/matrix[11];
q.W = (1.0f - matrix[10]/matrix[11]) / matrix[14];
// Calculate the scaled plane vector
CVector4D c = camPlane * (2.0f * matrix[11] / camPlane.Dot(q));
// Replace the third row of the projection matrix
matrix[2] = c.X;
matrix[6] = c.Y;
matrix[10] = c.Z - matrix[11];
matrix[14] = c.W;
// Load it back into the camera
camera.SetProjection(matrix);
}
void CRenderer::ComputeReflectionCamera(CCamera& camera, const CBoundingBoxAligned& scissor) const
{
WaterManager& wm = m->waterManager;
ENSURE(m_ViewCamera.GetProjectionType() == CCamera::PERSPECTIVE);
float fov = m_ViewCamera.GetFOV();
// Expand fov slightly since ripples can reflect parts of the scene that
// are slightly outside the normal camera view, and we want to avoid any
// noticeable edge-filtering artifacts
fov *= 1.05f;
camera = m_ViewCamera;
// Temporarily change the camera to one that is reflected.
// Also, for texturing purposes, make it render to a view port the size of the
// water texture, stretch the image according to our aspect ratio so it covers
// the whole screen despite being rendered into a square, and cover slightly more
// of the view so we can see wavy reflections of slightly off-screen objects.
camera.m_Orientation.Scale(1, -1, 1);
camera.m_Orientation.Translate(0, 2*wm.m_WaterHeight, 0);
camera.UpdateFrustum(scissor);
// Clip slightly above the water to improve reflections of objects on the water
// when the reflections are distorted.
camera.ClipFrustum(CVector4D(0, 1, 0, -wm.m_WaterHeight + 2.0f));
SViewPort vp;
vp.m_Height = wm.m_RefTextureSize;
vp.m_Width = wm.m_RefTextureSize;
vp.m_X = 0;
vp.m_Y = 0;
camera.SetViewPort(vp);
camera.SetPerspectiveProjection(m_ViewCamera.GetNearPlane(), m_ViewCamera.GetFarPlane(), fov);
CMatrix3D scaleMat;
scaleMat.SetScaling(m_Height/float(std::max(1, m_Width)), 1.0f, 1.0f);
camera.SetProjection(scaleMat * camera.GetProjection());
CVector4D camPlane(0, 1, 0, -wm.m_WaterHeight + 0.5f);
SetObliqueFrustumClipping(camera, camPlane);
}
void CRenderer::ComputeRefractionCamera(CCamera& camera, const CBoundingBoxAligned& scissor) const
{
WaterManager& wm = m->waterManager;
ENSURE(m_ViewCamera.GetProjectionType() == CCamera::PERSPECTIVE);
float fov = m_ViewCamera.GetFOV();
// Expand fov slightly since ripples can reflect parts of the scene that
// are slightly outside the normal camera view, and we want to avoid any
// noticeable edge-filtering artifacts
fov *= 1.05f;
camera = m_ViewCamera;
// Temporarily change the camera to make it render to a view port the size of the
// water texture, stretch the image according to our aspect ratio so it covers
// the whole screen despite being rendered into a square, and cover slightly more
// of the view so we can see wavy refractions of slightly off-screen objects.
camera.UpdateFrustum(scissor);
camera.ClipFrustum(CVector4D(0, -1, 0, wm.m_WaterHeight + 0.5f)); // add some to avoid artifacts near steep shores.
SViewPort vp;
vp.m_Height = wm.m_RefTextureSize;
vp.m_Width = wm.m_RefTextureSize;
vp.m_X = 0;
vp.m_Y = 0;
camera.SetViewPort(vp);
camera.SetPerspectiveProjection(m_ViewCamera.GetNearPlane(), m_ViewCamera.GetFarPlane(), fov);
CMatrix3D scaleMat;
scaleMat.SetScaling(m_Height/float(std::max(1, m_Width)), 1.0f, 1.0f);
camera.SetProjection(scaleMat * camera.GetProjection());
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// RenderReflections: render the water reflections to the reflection texture
void CRenderer::RenderReflections(const CShaderDefines& context, const CBoundingBoxAligned& scissor)
{
PROFILE3_GPU("water reflections");
// Save the post-processing framebuffer.
GLint fbo;
glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, &fbo);
WaterManager& wm = m->waterManager;
// Remember old camera
CCamera normalCamera = m_ViewCamera;
ComputeReflectionCamera(m_ViewCamera, scissor);
m->SetOpenGLCamera(m_ViewCamera);
// Save the model-view-projection matrix so the shaders can use it for projective texturing
wm.m_ReflectionMatrix = m_ViewCamera.GetViewProjection();
float vpHeight = wm.m_RefTextureSize;
float vpWidth = wm.m_RefTextureSize;
SScreenRect screenScissor;
screenScissor.x1 = (GLint)floor((scissor[0].X*0.5f+0.5f)*vpWidth);
screenScissor.y1 = (GLint)floor((scissor[0].Y*0.5f+0.5f)*vpHeight);
screenScissor.x2 = (GLint)ceil((scissor[1].X*0.5f+0.5f)*vpWidth);
screenScissor.y2 = (GLint)ceil((scissor[1].Y*0.5f+0.5f)*vpHeight);
glEnable(GL_SCISSOR_TEST);
glScissor(screenScissor.x1, screenScissor.y1, screenScissor.x2 - screenScissor.x1, screenScissor.y2 - screenScissor.y1);
// try binding the framebuffer
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, wm.m_ReflectionFbo);
glClearColor(0.5f,0.5f,1.0f,0.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glFrontFace(GL_CW);
if (!g_RenderingOptions.GetWaterReflection())
{
m->skyManager.RenderSky();
ogl_WarnIfError();
}
else
{
// Render terrain and models
RenderPatches(context, CULL_REFLECTIONS);
ogl_WarnIfError();
RenderModels(context, CULL_REFLECTIONS);
ogl_WarnIfError();
RenderTransparentModels(context, CULL_REFLECTIONS, TRANSPARENT, true);
ogl_WarnIfError();
}
glFrontFace(GL_CCW);
// Particles are always oriented to face the camera in the vertex shader,
// so they don't need the inverted glFrontFace
if (g_RenderingOptions.GetParticles())
{
RenderParticles(CULL_REFLECTIONS);
ogl_WarnIfError();
}
glDisable(GL_SCISSOR_TEST);
// Reset old camera
m_ViewCamera = normalCamera;
m->SetOpenGLCamera(m_ViewCamera);
// rebind post-processing frambuffer.
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
return;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// RenderRefractions: render the water refractions to the refraction texture
void CRenderer::RenderRefractions(const CShaderDefines& context, const CBoundingBoxAligned &scissor)
{
PROFILE3_GPU("water refractions");
// Save the post-processing framebuffer.
GLint fbo;
glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, &fbo);
WaterManager& wm = m->waterManager;
// Remember old camera
CCamera normalCamera = m_ViewCamera;
ComputeRefractionCamera(m_ViewCamera, scissor);
CVector4D camPlane(0, -1, 0, wm.m_WaterHeight + 2.0f);
SetObliqueFrustumClipping(m_ViewCamera, camPlane);
m->SetOpenGLCamera(m_ViewCamera);
// Save the model-view-projection matrix so the shaders can use it for projective texturing
wm.m_RefractionMatrix = m_ViewCamera.GetViewProjection();
float vpHeight = wm.m_RefTextureSize;
float vpWidth = wm.m_RefTextureSize;
SScreenRect screenScissor;
screenScissor.x1 = (GLint)floor((scissor[0].X*0.5f+0.5f)*vpWidth);
screenScissor.y1 = (GLint)floor((scissor[0].Y*0.5f+0.5f)*vpHeight);
screenScissor.x2 = (GLint)ceil((scissor[1].X*0.5f+0.5f)*vpWidth);
screenScissor.y2 = (GLint)ceil((scissor[1].Y*0.5f+0.5f)*vpHeight);
glEnable(GL_SCISSOR_TEST);
glScissor(screenScissor.x1, screenScissor.y1, screenScissor.x2 - screenScissor.x1, screenScissor.y2 - screenScissor.y1);
// try binding the framebuffer
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, wm.m_RefractionFbo);
glClearColor(1.0f,0.0f,0.0f,0.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Render terrain and models
RenderPatches(context, CULL_REFRACTIONS);
ogl_WarnIfError();
RenderModels(context, CULL_REFRACTIONS);
ogl_WarnIfError();
RenderTransparentModels(context, CULL_REFRACTIONS, TRANSPARENT_OPAQUE, false);
ogl_WarnIfError();
glDisable(GL_SCISSOR_TEST);
// Reset old camera
m_ViewCamera = normalCamera;
m->SetOpenGLCamera(m_ViewCamera);
// rebind post-processing frambuffer.
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
return;
}
void CRenderer::RenderSilhouettes(const CShaderDefines& context)
{
PROFILE3_GPU("silhouettes");
CShaderDefines contextOccluder = context;
contextOccluder.Add(str_MODE_SILHOUETTEOCCLUDER, str_1);
CShaderDefines contextDisplay = context;
contextDisplay.Add(str_MODE_SILHOUETTEDISPLAY, str_1);
// Render silhouettes of units hidden behind terrain or occluders.
// To avoid breaking the standard rendering of alpha-blended objects, this
// has to be done in a separate pass.
// First we render all occluders into depth, then render all units with
// inverted depth test so any behind an occluder will get drawn in a constant
// color.
float silhouetteAlpha = 0.75f;
// Silhouette blending requires an almost-universally-supported extension;
// fall back to non-blended if unavailable
if (!ogl_HaveExtension("GL_EXT_blend_color"))
silhouetteAlpha = 1.f;
glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
glColorMask(0, 0, 0, 0);
// Render occluders:
{
PROFILE("render patches");
// To prevent units displaying silhouettes when parts of their model
// protrude into the ground, only occlude with the back faces of the
// terrain (so silhouettes will still display when behind hills)
glCullFace(GL_FRONT);
m->terrainRenderer.RenderPatches(CULL_SILHOUETTE_OCCLUDER);
glCullFace(GL_BACK);
}
{
PROFILE("render model occluders");
m->CallModelRenderers(contextOccluder, CULL_SILHOUETTE_OCCLUDER, 0);
}
{
PROFILE("render transparent occluders");
m->CallTranspModelRenderers(contextOccluder, CULL_SILHOUETTE_OCCLUDER, 0);
}
glDepthFunc(GL_GEQUAL);
glColorMask(1, 1, 1, 1);
// Render more efficiently if alpha == 1
if (silhouetteAlpha == 1.f)
{
// Ideally we'd render objects back-to-front so nearer silhouettes would
// appear on top, but sorting has non-zero cost. So we'll keep the depth
// write enabled, to do the opposite - far objects will consistently appear
// on top.
glDepthMask(0);
}
else
{
// Since we can't sort, we'll use the stencil buffer to ensure we only draw
// a pixel once (using the color of whatever model happens to be drawn first).
glEnable(GL_BLEND);
glBlendFunc(GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA);
pglBlendColorEXT(0, 0, 0, silhouetteAlpha);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 1, (GLuint)-1);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
}
{
PROFILE("render model casters");
m->CallModelRenderers(contextDisplay, CULL_SILHOUETTE_CASTER, 0);
}
{
PROFILE("render transparent casters");
m->CallTranspModelRenderers(contextDisplay, CULL_SILHOUETTE_CASTER, 0);
}
// Restore state
glDepthFunc(GL_LEQUAL);
if (silhouetteAlpha == 1.f)
{
glDepthMask(1);
}
else
{
glDisable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
pglBlendColorEXT(0, 0, 0, 0);
glDisable(GL_STENCIL_TEST);
}
}
void CRenderer::RenderParticles(int cullGroup)
{
// Only supported in shader modes
if (g_RenderingOptions.GetRenderPath() != RenderPath::SHADER)
return;
PROFILE3_GPU("particles");
m->particleRenderer.RenderParticles(cullGroup);
#if !CONFIG2_GLES
if (m_ModelRenderMode == EDGED_FACES)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glDisable(GL_TEXTURE_2D);
glColor3f(0.0f, 0.5f, 0.0f);
m->particleRenderer.RenderParticles(true);
CShaderTechniquePtr shaderTech = g_Renderer.GetShaderManager().LoadEffect(str_gui_solid);
shaderTech->BeginPass();
CShaderProgramPtr shader = shaderTech->GetShader();
shader->Uniform(str_color, 0.0f, 1.0f, 0.0f, 1.0f);
shader->Uniform(str_transform, m_ViewCamera.GetViewProjection());
m->particleRenderer.RenderBounds(cullGroup, shader);
shaderTech->EndPass();
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// RenderSubmissions: force rendering of any batched objects
void CRenderer::RenderSubmissions(const CBoundingBoxAligned& waterScissor)
{
PROFILE3("render submissions");
GetScene().GetLOSTexture().InterpolateLOS();
if (g_RenderingOptions.GetPostProc())
{
m->postprocManager.Initialize();
m->postprocManager.CaptureRenderOutput();
}
CShaderDefines context = m->globalContext;
int cullGroup = CULL_DEFAULT;
ogl_WarnIfError();
// Set the camera
m->SetOpenGLCamera(m_ViewCamera);
// Prepare model renderers
{
PROFILE3("prepare models");
m->Model.NormalSkinned->PrepareModels();
m->Model.TranspSkinned->PrepareModels();
if (m->Model.NormalUnskinned != m->Model.NormalSkinned)
m->Model.NormalUnskinned->PrepareModels();
if (m->Model.TranspUnskinned != m->Model.TranspSkinned)
m->Model.TranspUnskinned->PrepareModels();
}
m->terrainRenderer.PrepareForRendering();
m->overlayRenderer.PrepareForRendering();
m->particleRenderer.PrepareForRendering(context);
if (m_Caps.m_Shadows && g_RenderingOptions.GetShadows() && g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
{
RenderShadowMap(context);
}
{
PROFILE3_GPU("clear buffers");
glClearColor(m_ClearColor[0], m_ClearColor[1], m_ClearColor[2], m_ClearColor[3]);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
}
if (g_RenderingOptions.GetPostProc())
{
// We have to update the post process manager with real near/far planes
// that we use for the scene rendering.
m->postprocManager.SetDepthBufferClipPlanes(
m_ViewCamera.GetNearPlane(), m_ViewCamera.GetFarPlane()
);
}
ogl_WarnIfError();
if (m_WaterManager->m_RenderWater)
{
if (waterScissor.GetVolume() > 0 && m_WaterManager->WillRenderFancyWater())
{
PROFILE3_GPU("water scissor");
RenderReflections(context, waterScissor);
if (g_RenderingOptions.GetWaterRefraction())
RenderRefractions(context, waterScissor);
}
}
if (g_RenderingOptions.GetShowSky())
{
m->skyManager.RenderSky();
}
// render submitted patches and models
RenderPatches(context, cullGroup);
ogl_WarnIfError();
// render debug-related terrain overlays
ITerrainOverlay::RenderOverlaysBeforeWater();
ogl_WarnIfError();
// render other debug-related overlays before water (so they can be seen when underwater)
m->overlayRenderer.RenderOverlaysBeforeWater();
ogl_WarnIfError();
RenderModels(context, cullGroup);
ogl_WarnIfError();
// render water
if (m_WaterManager->m_RenderWater && g_Game && waterScissor.GetVolume() > 0)
{
// render transparent stuff, but only the solid parts that can occlude block water
RenderTransparentModels(context, cullGroup, TRANSPARENT_OPAQUE, false);
ogl_WarnIfError();
m->terrainRenderer.RenderWater(context, cullGroup, &m->shadow);
ogl_WarnIfError();
// render transparent stuff again, but only the blended parts that overlap water
RenderTransparentModels(context, cullGroup, TRANSPARENT_BLEND, false);
ogl_WarnIfError();
}
else
{
// render transparent stuff, so it can overlap models/terrain
RenderTransparentModels(context, cullGroup, TRANSPARENT, false);
ogl_WarnIfError();
}
// render debug-related terrain overlays
ITerrainOverlay::RenderOverlaysAfterWater(cullGroup);
ogl_WarnIfError();
// render some other overlays after water (so they can be displayed on top of water)
m->overlayRenderer.RenderOverlaysAfterWater();
ogl_WarnIfError();
// particles are transparent so render after water
if (g_RenderingOptions.GetParticles())
{
RenderParticles(cullGroup);
ogl_WarnIfError();
}
if (g_RenderingOptions.GetPostProc())
{
m->postprocManager.ApplyPostproc();
m->postprocManager.ReleaseRenderOutput();
}
if (g_RenderingOptions.GetSilhouettes())
{
RenderSilhouettes(context);
}
#if !CONFIG2_GLES
// Clean up texture blend mode so particles and other things render OK
// (really this should be cleaned up by whoever set it)
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
#endif
// render debug lines
if (g_RenderingOptions.GetDisplayFrustum())
{
DisplayFrustum();
m->shadow.RenderDebugBounds();
m->shadow.RenderDebugTexture();
ogl_WarnIfError();
}
m->silhouetteRenderer.RenderDebugOverlays(m_ViewCamera);
// render overlays that should appear on top of all other objects
m->overlayRenderer.RenderForegroundOverlays(m_ViewCamera);
ogl_WarnIfError();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// EndFrame: signal frame end
void CRenderer::EndFrame()
{
PROFILE3("end frame");
// empty lists
m->terrainRenderer.EndFrame();
m->overlayRenderer.EndFrame();
m->particleRenderer.EndFrame();
m->silhouetteRenderer.EndFrame();
// Finish model renderers
m->Model.NormalSkinned->EndFrame();
m->Model.TranspSkinned->EndFrame();
if (m->Model.NormalUnskinned != m->Model.NormalSkinned)
m->Model.NormalUnskinned->EndFrame();
if (m->Model.TranspUnskinned != m->Model.TranspSkinned)
m->Model.TranspUnskinned->EndFrame();
ogl_tex_bind(0, 0);
{
PROFILE3("error check");
int err = glGetError();
if (err)
{
ONCE(LOGERROR("CRenderer::EndFrame: GL errors %s (%04x) occurred", ogl_GetErrorName(err), err));
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// DisplayFrustum: debug displays
// - white: cull camera frustum
// - red: bounds of shadow casting objects
void CRenderer::DisplayFrustum()
{
#if CONFIG2_GLES
#warning TODO: implement CRenderer::DisplayFrustum for GLES
#else
glDepthMask(0);
glDisable(GL_CULL_FACE);
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor4ub(255,255,255,64);
m_CullCamera.Render(2);
glDisable(GL_BLEND);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glColor3ub(255,255,255);
m_CullCamera.Render(2);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glEnable(GL_CULL_FACE);
glDepthMask(1);
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// Text overlay rendering
void CRenderer::RenderTextOverlays()
{
PROFILE3_GPU("text overlays");
if (m_DisplayTerrainPriorities)
m->terrainRenderer.RenderPriorities(CULL_DEFAULT);
ogl_WarnIfError();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// SetSceneCamera: setup projection and transform of camera and adjust viewport to current view
// The camera always represents the actual camera used to render a scene, not any virtual camera
// used for shadow rendering or reflections.
void CRenderer::SetSceneCamera(const CCamera& viewCamera, const CCamera& cullCamera)
{
m_ViewCamera = viewCamera;
m_CullCamera = cullCamera;
if (m_Caps.m_Shadows && g_RenderingOptions.GetShadows() && g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
m->shadow.SetupFrame(m_CullCamera, m_LightEnv->GetSunDir());
}
void CRenderer::SetViewport(const SViewPort &vp)
{
m_Viewport = vp;
glViewport((GLint)vp.m_X,(GLint)vp.m_Y,(GLsizei)vp.m_Width,(GLsizei)vp.m_Height);
}
SViewPort CRenderer::GetViewport()
{
return m_Viewport;
}
void CRenderer::Submit(CPatch* patch)
{
if (m_CurrentCullGroup == CULL_DEFAULT)
{
m->shadow.AddShadowReceiverBound(patch->GetWorldBounds());
m->silhouetteRenderer.AddOccluder(patch);
}
if (m_CurrentCullGroup == CULL_SHADOWS)
{
m->shadow.AddShadowCasterBound(patch->GetWorldBounds());
}
m->terrainRenderer.Submit(m_CurrentCullGroup, patch);
}
void CRenderer::Submit(SOverlayLine* overlay)
{
// Overlays are only needed in the default cull group for now,
// so just ignore submissions to any other group
if (m_CurrentCullGroup == CULL_DEFAULT)
m->overlayRenderer.Submit(overlay);
}
void CRenderer::Submit(SOverlayTexturedLine* overlay)
{
if (m_CurrentCullGroup == CULL_DEFAULT)
m->overlayRenderer.Submit(overlay);
}
void CRenderer::Submit(SOverlaySprite* overlay)
{
if (m_CurrentCullGroup == CULL_DEFAULT)
m->overlayRenderer.Submit(overlay);
}
void CRenderer::Submit(SOverlayQuad* overlay)
{
if (m_CurrentCullGroup == CULL_DEFAULT)
m->overlayRenderer.Submit(overlay);
}
void CRenderer::Submit(SOverlaySphere* overlay)
{
if (m_CurrentCullGroup == CULL_DEFAULT)
m->overlayRenderer.Submit(overlay);
}
void CRenderer::Submit(CModelDecal* decal)
{
// Decals can't cast shadows since they're flat on the terrain.
// They can receive shadows, but the terrain under them will have
// already been passed to AddShadowCasterBound, so don't bother
// doing it again here.
m->terrainRenderer.Submit(m_CurrentCullGroup, decal);
}
void CRenderer::Submit(CParticleEmitter* emitter)
{
m->particleRenderer.Submit(m_CurrentCullGroup, emitter);
}
void CRenderer::SubmitNonRecursive(CModel* model)
{
if (m_CurrentCullGroup == CULL_DEFAULT)
{
m->shadow.AddShadowReceiverBound(model->GetWorldBounds());
if (model->GetFlags() & MODELFLAG_SILHOUETTE_OCCLUDER)
m->silhouetteRenderer.AddOccluder(model);
if (model->GetFlags() & MODELFLAG_SILHOUETTE_DISPLAY)
m->silhouetteRenderer.AddCaster(model);
}
if (m_CurrentCullGroup == CULL_SHADOWS)
{
if (!(model->GetFlags() & MODELFLAG_CASTSHADOWS))
return;
m->shadow.AddShadowCasterBound(model->GetWorldBounds());
}
bool requiresSkinning = (model->GetModelDef()->GetNumBones() != 0);
if (model->GetMaterial().UsesAlphaBlending())
{
if (requiresSkinning)
m->Model.TranspSkinned->Submit(m_CurrentCullGroup, model);
else
m->Model.TranspUnskinned->Submit(m_CurrentCullGroup, model);
}
else
{
if (requiresSkinning)
m->Model.NormalSkinned->Submit(m_CurrentCullGroup, model);
else
m->Model.NormalUnskinned->Submit(m_CurrentCullGroup, model);
}
}
///////////////////////////////////////////////////////////
// Render the given scene
void CRenderer::RenderScene(Scene& scene)
{
m_CurrentScene = &scene;
CFrustum frustum = m_CullCamera.GetFrustum();
m_CurrentCullGroup = CULL_DEFAULT;
scene.EnumerateObjects(frustum, this);
m->particleManager.RenderSubmit(*this, frustum);
if (g_RenderingOptions.GetSilhouettes())
{
m->silhouetteRenderer.ComputeSubmissions(m_ViewCamera);
m_CurrentCullGroup = CULL_DEFAULT;
m->silhouetteRenderer.RenderSubmitOverlays(*this);
m_CurrentCullGroup = CULL_SILHOUETTE_OCCLUDER;
m->silhouetteRenderer.RenderSubmitOccluders(*this);
m_CurrentCullGroup = CULL_SILHOUETTE_CASTER;
m->silhouetteRenderer.RenderSubmitCasters(*this);
}
if (m_Caps.m_Shadows && g_RenderingOptions.GetShadows() && g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
{
m_CurrentCullGroup = CULL_SHADOWS;
CFrustum shadowFrustum = m->shadow.GetShadowCasterCullFrustum();
scene.EnumerateObjects(shadowFrustum, this);
}
CBoundingBoxAligned waterScissor;
if (m_WaterManager->m_RenderWater)
{
waterScissor = m->terrainRenderer.ScissorWater(CULL_DEFAULT, m_ViewCamera.GetViewProjection());
if (waterScissor.GetVolume() > 0 && m_WaterManager->WillRenderFancyWater())
{
if (g_RenderingOptions.GetWaterReflection())
{
m_CurrentCullGroup = CULL_REFLECTIONS;
CCamera reflectionCamera;
ComputeReflectionCamera(reflectionCamera, waterScissor);
scene.EnumerateObjects(reflectionCamera.GetFrustum(), this);
}
if (g_RenderingOptions.GetWaterRefraction())
{
m_CurrentCullGroup = CULL_REFRACTIONS;
CCamera refractionCamera;
ComputeRefractionCamera(refractionCamera, waterScissor);
scene.EnumerateObjects(refractionCamera.GetFrustum(), this);
}
}
// Render the waves to the Fancy effects texture
m_WaterManager->RenderWaves(frustum);
}
m_CurrentCullGroup = -1;
ogl_WarnIfError();
RenderSubmissions(waterScissor);
m_CurrentScene = NULL;
}
Scene& CRenderer::GetScene()
{
ENSURE(m_CurrentScene);
return *m_CurrentScene;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// BindTexture: bind a GL texture object to current active unit
void CRenderer::BindTexture(int unit, GLuint tex)
{
pglActiveTextureARB(GL_TEXTURE0+unit);
glBindTexture(GL_TEXTURE_2D, tex);
#if !CONFIG2_GLES
if (tex) {
glEnable(GL_TEXTURE_2D);
} else {
glDisable(GL_TEXTURE_2D);
}
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// LoadAlphaMaps: load the 14 default alpha maps, pack them into one composite texture and
// calculate the coordinate of each alphamap within this packed texture
// NB: A variant of this function is duplicated in TerrainTextureEntry.cpp, for use with the Shader
// renderpath. This copy is kept to load the 'standard' maps for the fixed pipeline and should
// be removed if/when the fixed pipeline goes.
int CRenderer::LoadAlphaMaps()
{
const wchar_t* const key = L"(alpha map composite)";
Handle ht = ogl_tex_find(key);
// alpha map texture had already been created and is still in memory:
// reuse it, do not load again.
if(ht > 0)
{
m_hCompositeAlphaMap = ht;
return 0;
}
//
// load all textures and store Handle in array
//
Handle textures[NumAlphaMaps] = {0};
VfsPath path(L"art/textures/terrain/alphamaps/standard");
const wchar_t* fnames[NumAlphaMaps] = {
L"blendcircle.png",
L"blendlshape.png",
L"blendedge.png",
L"blendedgecorner.png",
L"blendedgetwocorners.png",
L"blendfourcorners.png",
L"blendtwooppositecorners.png",
L"blendlshapecorner.png",
L"blendtwocorners.png",
L"blendcorner.png",
L"blendtwoedges.png",
L"blendthreecorners.png",
L"blendushape.png",
L"blendbad.png"
};
size_t base = 0; // texture width/height (see below)
// for convenience, we require all alpha maps to be of the same BPP
// (avoids another ogl_tex_get_size call, and doesn't hurt)
size_t bpp = 0;
for(size_t i=0;i<NumAlphaMaps;i++)
{
// note: these individual textures can be discarded afterwards;
// we cache the composite.
textures[i] = ogl_tex_load(g_VFS, path / fnames[i]);
RETURN_STATUS_IF_ERR(textures[i]);
// get its size and make sure they are all equal.
// (the packing algo assumes this)
size_t this_width = 0, this_height = 0, this_bpp = 0; // fail-safe
(void)ogl_tex_get_size(textures[i], &this_width, &this_height, &this_bpp);
if(this_width != this_height)
DEBUG_DISPLAY_ERROR(L"Alpha maps are not square");
// .. first iteration: establish size
if(i == 0)
{
base = this_width;
bpp = this_bpp;
}
// .. not first: make sure texture size matches
else if(base != this_width || bpp != this_bpp)
DEBUG_DISPLAY_ERROR(L"Alpha maps are not identically sized (including pixel depth)");
}
//
// copy each alpha map (tile) into one buffer, arrayed horizontally.
//
size_t tile_w = 2+base+2; // 2 pixel border (avoids bilinear filtering artifacts)
size_t total_w = round_up_to_pow2(tile_w * NumAlphaMaps);
size_t total_h = base; ENSURE(is_pow2(total_h));
shared_ptr<u8> data;
AllocateAligned(data, total_w*total_h, maxSectorSize);
// for each tile on row
for (size_t i = 0; i < NumAlphaMaps; i++)
{
// get src of copy
u8* src = 0;
(void)ogl_tex_get_data(textures[i], &src);
size_t srcstep = bpp/8;
// get destination of copy
u8* dst = data.get() + (i*tile_w);
// for each row of image
for (size_t j = 0; j < base; j++)
{
// duplicate first pixel
*dst++ = *src;
*dst++ = *src;
// copy a row
for (size_t k = 0; k < base; k++)
{
*dst++ = *src;
src += srcstep;
}
// duplicate last pixel
*dst++ = *(src-srcstep);
*dst++ = *(src-srcstep);
// advance write pointer for next row
dst += total_w-tile_w;
}
m_AlphaMapCoords[i].u0 = float(i*tile_w+2) / float(total_w);
m_AlphaMapCoords[i].u1 = float((i+1)*tile_w-2) / float(total_w);
m_AlphaMapCoords[i].v0 = 0.0f;
m_AlphaMapCoords[i].v1 = 1.0f;
}
for (size_t i = 0; i < NumAlphaMaps; i++)
(void)ogl_tex_free(textures[i]);
// upload the composite texture
Tex t;
(void)t.wrap(total_w, total_h, 8, TEX_GREY, data, 0);
/*VfsPath filename("blendtex.png");
DynArray da;
RETURN_STATUS_IF_ERR(tex_encode(&t, filename.Extension(), &da));
// write to disk
//Status ret = INFO::OK;
{
shared_ptr<u8> file = DummySharedPtr(da.base);
const ssize_t bytes_written = g_VFS->CreateFile(filename, file, da.pos);
if(bytes_written > 0)
ENSURE(bytes_written == (ssize_t)da.pos);
//else
// ret = (Status)bytes_written;
}
(void)da_free(&da);*/
m_hCompositeAlphaMap = ogl_tex_wrap(&t, g_VFS, key);
(void)ogl_tex_set_filter(m_hCompositeAlphaMap, GL_LINEAR);
(void)ogl_tex_set_wrap (m_hCompositeAlphaMap, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_EDGE);
int ret = ogl_tex_upload(m_hCompositeAlphaMap, GL_ALPHA, 0, 0);
return ret;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// UnloadAlphaMaps: frees the resources allocates by LoadAlphaMaps
void CRenderer::UnloadAlphaMaps()
{
ogl_tex_free(m_hCompositeAlphaMap);
m_hCompositeAlphaMap = 0;
}
Status CRenderer::ReloadChangedFileCB(void* param, const VfsPath& path)
{
CRenderer* renderer = static_cast<CRenderer*>(param);
// If an alpha map changed, and we already loaded them, then reload them
if (boost::algorithm::starts_with(path.string(), L"art/textures/terrain/alphamaps/"))
{
if (renderer->m_hCompositeAlphaMap)
{
renderer->UnloadAlphaMaps();
renderer->LoadAlphaMaps();
}
}
return INFO::OK;
}
void CRenderer::MakeShadersDirty()
{
m->ShadersDirty = true;
m_WaterManager->m_NeedsReloading = true;
}
CTextureManager& CRenderer::GetTextureManager()
{
return m->textureManager;
}
CShaderManager& CRenderer::GetShaderManager()
{
return m->shaderManager;
}
CParticleManager& CRenderer::GetParticleManager()
{
return m->particleManager;
}
TerrainRenderer& CRenderer::GetTerrainRenderer()
{
return m->terrainRenderer;
}
CTimeManager& CRenderer::GetTimeManager()
{
return m->timeManager;
}
CMaterialManager& CRenderer::GetMaterialManager()
{
return m->materialManager;
}
CPostprocManager& CRenderer::GetPostprocManager()
{
return m->postprocManager;
}
CFontManager& CRenderer::GetFontManager()
{
return m->fontManager;
}
ShadowMap& CRenderer::GetShadowMap()
{
return m->shadow;
}
void CRenderer::ResetState()
{
// Clear all emitters, that were created in previous games
GetParticleManager().ClearUnattachedEmitters();
}