1
0
forked from 0ad/0ad
0ad/source/simulation2/components/CCmpPathfinder_Common.h
Ykkrosh db39d742f0 Fix units falling off the edge of the world.
I guess changes to the map loading sequence caused the TerrainChanged
message to be sent before the map was switched from square to circular
instead of after. The pathfinder didn't notice the switch, so it
continued treating the map as if it were square, allowing units to walk
into the permanent map-corner SOD and vanish, and allowing territories
to expand into the SOD.

Tell the pathfinder explicitly when the map shape changes, so it can
discard its cached data correctly.

This was SVN commit r15277.
2014-06-03 22:35:40 +00:00

310 lines
12 KiB
C++

/* Copyright (C) 2013 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_CCMPPATHFINDER_COMMON
#define INCLUDED_CCMPPATHFINDER_COMMON
/**
* @file
* Declares CCmpPathfinder, whose implementation is split into multiple source files,
* and provides common code needed for more than one of those files.
* CCmpPathfinder includes two pathfinding algorithms (one tile-based, one vertex-based)
* with some shared state and functionality, so the code is split into
* CCmpPathfinder_Vertex.cpp, CCmpPathfinder_Tile.cpp and CCmpPathfinder.cpp
*/
#include "simulation2/system/Component.h"
#include "ICmpPathfinder.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "maths/MathUtil.h"
#include "simulation2/helpers/Geometry.h"
#include "simulation2/helpers/Grid.h"
class PathfinderOverlay;
class SceneCollector;
struct PathfindTile;
#ifdef NDEBUG
#define PATHFIND_DEBUG 0
#else
#define PATHFIND_DEBUG 1
#endif
/*
* For efficient pathfinding we want to try hard to minimise the per-tile search cost,
* so we precompute the tile passability flags and movement costs for the various different
* types of unit.
* We also want to minimise memory usage (there can easily be 100K tiles so we don't want
* to store many bytes for each).
*
* To handle passability efficiently, we have a small number of passability classes
* (e.g. "infantry", "ship"). Each unit belongs to a single passability class, and
* uses that for all its pathfinding.
* Passability is determined by water depth, terrain slope, forestness, buildingness.
* We need at least one bit per class per tile to represent passability.
*
* We use a separate bit to indicate building obstructions (instead of folding it into
* the class passabilities) so that it can be ignored when doing the accurate short paths.
* We use another bit to indicate tiles near obstructions that block construction,
* for the AI to plan safe building spots.
*
* To handle movement costs, we have an arbitrary number of unit cost classes (e.g. "infantry", "camel"),
* and a small number of terrain cost classes (e.g. "grass", "steep grass", "road", "sand"),
* and a cost mapping table between the classes (e.g. camels are fast on sand).
* We need log2(|terrain cost classes|) bits per tile to represent costs.
*
* We could have one passability bitmap per class, and another array for cost classes,
* but instead (for no particular reason) we'll pack them all into a single u16 array.
*
* We handle dynamic updates currently by recomputing the entire array, which is stupid;
* it should only bother updating the region that has changed.
*/
class PathfinderPassability
{
public:
PathfinderPassability(ICmpPathfinder::pass_class_t mask, const CParamNode& node) :
m_Mask(mask)
{
if (node.GetChild("MinWaterDepth").IsOk())
m_MinDepth = node.GetChild("MinWaterDepth").ToFixed();
else
m_MinDepth = std::numeric_limits<fixed>::min();
if (node.GetChild("MaxWaterDepth").IsOk())
m_MaxDepth = node.GetChild("MaxWaterDepth").ToFixed();
else
m_MaxDepth = std::numeric_limits<fixed>::max();
if (node.GetChild("MaxTerrainSlope").IsOk())
m_MaxSlope = node.GetChild("MaxTerrainSlope").ToFixed();
else
m_MaxSlope = std::numeric_limits<fixed>::max();
if (node.GetChild("MinShoreDistance").IsOk())
m_MinShore = node.GetChild("MinShoreDistance").ToFixed();
else
m_MinShore = std::numeric_limits<fixed>::min();
if (node.GetChild("MaxShoreDistance").IsOk())
m_MaxShore = node.GetChild("MaxShoreDistance").ToFixed();
else
m_MaxShore = std::numeric_limits<fixed>::max();
}
bool IsPassable(fixed waterdepth, fixed steepness, fixed shoredist)
{
return ((m_MinDepth <= waterdepth && waterdepth <= m_MaxDepth) && (steepness < m_MaxSlope) && (m_MinShore <= shoredist && shoredist <= m_MaxShore));
}
ICmpPathfinder::pass_class_t m_Mask;
private:
fixed m_MinDepth;
fixed m_MaxDepth;
fixed m_MaxSlope;
fixed m_MinShore;
fixed m_MaxShore;
};
typedef u16 TerrainTile;
// 1 bit for pathfinding obstructions,
// 1 bit for construction obstructions (used by AI),
// PASS_CLASS_BITS for terrain passability (allowing PASS_CLASS_BITS classes),
// COST_CLASS_BITS for movement costs (allowing 2^COST_CLASS_BITS classes)
const int PASS_CLASS_BITS = 10;
const int COST_CLASS_BITS = 16 - (PASS_CLASS_BITS + 2);
#define IS_TERRAIN_PASSABLE(item, classmask) (((item) & (classmask)) == 0)
#define IS_PASSABLE(item, classmask) (((item) & ((classmask) | 1)) == 0)
#define GET_COST_CLASS(item) ((item) >> (PASS_CLASS_BITS + 2))
#define COST_CLASS_MASK(id) ( (TerrainTile) ((id) << (PASS_CLASS_BITS + 2)) )
typedef SparseGrid<PathfindTile> PathfindTileGrid;
struct AsyncLongPathRequest
{
u32 ticket;
entity_pos_t x0;
entity_pos_t z0;
ICmpPathfinder::Goal goal;
ICmpPathfinder::pass_class_t passClass;
ICmpPathfinder::cost_class_t costClass;
entity_id_t notify;
};
struct AsyncShortPathRequest
{
u32 ticket;
entity_pos_t x0;
entity_pos_t z0;
entity_pos_t r;
entity_pos_t range;
ICmpPathfinder::Goal goal;
ICmpPathfinder::pass_class_t passClass;
bool avoidMovingUnits;
entity_id_t group;
entity_id_t notify;
};
/**
* Implementation of ICmpPathfinder
*/
class CCmpPathfinder : public ICmpPathfinder
{
public:
static void ClassInit(CComponentManager& componentManager)
{
componentManager.SubscribeToMessageType(MT_Update);
componentManager.SubscribeToMessageType(MT_RenderSubmit); // for debug overlays
componentManager.SubscribeToMessageType(MT_TerrainChanged);
componentManager.SubscribeToMessageType(MT_WaterChanged);
componentManager.SubscribeToMessageType(MT_ObstructionMapShapeChanged);
componentManager.SubscribeToMessageType(MT_TurnStart);
}
DEFAULT_COMPONENT_ALLOCATOR(Pathfinder)
// Template state:
std::map<std::string, pass_class_t> m_PassClassMasks;
std::vector<PathfinderPassability> m_PassClasses;
std::map<std::string, cost_class_t> m_TerrainCostClassTags;
std::map<std::string, cost_class_t> m_UnitCostClassTags;
std::vector<std::vector<u32> > m_MoveCosts; // costs[unitClass][terrainClass]
std::vector<std::vector<fixed> > m_MoveSpeeds; // speeds[unitClass][terrainClass]
// Dynamic state:
std::vector<AsyncLongPathRequest> m_AsyncLongPathRequests;
std::vector<AsyncShortPathRequest> m_AsyncShortPathRequests;
u32 m_NextAsyncTicket; // unique IDs for asynchronous path requests
u16 m_SameTurnMovesCount; // current number of same turn moves we have processed this turn
// Lazily-constructed dynamic state (not serialized):
u16 m_MapSize; // tiles per side
Grid<TerrainTile>* m_Grid; // terrain/passability information
Grid<u8>* m_ObstructionGrid; // cached obstruction information (TODO: we shouldn't bother storing this, it's redundant with LSBs of m_Grid)
bool m_TerrainDirty; // indicates if m_Grid has been updated since terrain changed
// For responsiveness we will process some moves in the same turn they were generated in
u16 m_MaxSameTurnMoves; // max number of moves that can be created and processed in the same turn
// Debugging - output from last pathfind operation:
PathfindTileGrid* m_DebugGrid;
u32 m_DebugSteps;
Path* m_DebugPath;
PathfinderOverlay* m_DebugOverlay;
pass_class_t m_DebugPassClass;
std::vector<SOverlayLine> m_DebugOverlayShortPathLines;
static std::string GetSchema()
{
return "<a:component type='system'/><empty/>";
}
virtual void Init(const CParamNode& paramNode);
virtual void Deinit();
virtual void Serialize(ISerializer& serialize);
virtual void Deserialize(const CParamNode& paramNode, IDeserializer& deserialize);
virtual void HandleMessage(const CMessage& msg, bool global);
virtual pass_class_t GetPassabilityClass(const std::string& name);
virtual std::map<std::string, pass_class_t> GetPassabilityClasses();
virtual cost_class_t GetCostClass(const std::string& name);
virtual const Grid<u16>& GetPassabilityGrid();
virtual void ComputePath(entity_pos_t x0, entity_pos_t z0, const Goal& goal, pass_class_t passClass, cost_class_t costClass, Path& ret);
virtual u32 ComputePathAsync(entity_pos_t x0, entity_pos_t z0, const Goal& goal, pass_class_t passClass, cost_class_t costClass, entity_id_t notify);
virtual void ComputeShortPath(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t r, entity_pos_t range, const Goal& goal, pass_class_t passClass, Path& ret);
virtual u32 ComputeShortPathAsync(entity_pos_t x0, entity_pos_t z0, entity_pos_t r, entity_pos_t range, const Goal& goal, pass_class_t passClass, bool avoidMovingUnits, entity_id_t controller, entity_id_t notify);
virtual void SetDebugPath(entity_pos_t x0, entity_pos_t z0, const Goal& goal, pass_class_t passClass, cost_class_t costClass);
virtual void ResetDebugPath();
virtual void SetDebugOverlay(bool enabled);
virtual fixed GetMovementSpeed(entity_pos_t x0, entity_pos_t z0, cost_class_t costClass);
virtual CFixedVector2D GetNearestPointOnGoal(CFixedVector2D pos, const Goal& goal);
virtual bool CheckMovement(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, entity_pos_t r, pass_class_t passClass);
virtual ICmpObstruction::EFoundationCheck CheckUnitPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r, pass_class_t passClass);
virtual ICmpObstruction::EFoundationCheck CheckUnitPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r, pass_class_t passClass, bool onlyCenterPoint);
virtual ICmpObstruction::EFoundationCheck CheckBuildingPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h, entity_id_t id, pass_class_t passClass);
virtual ICmpObstruction::EFoundationCheck CheckBuildingPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h, entity_id_t id, pass_class_t passClass, bool onlyCenterPoint);
virtual void FinishAsyncRequests();
void ProcessLongRequests(const std::vector<AsyncLongPathRequest>& longRequests);
void ProcessShortRequests(const std::vector<AsyncShortPathRequest>& shortRequests);
virtual void ProcessSameTurnMoves();
/**
* Returns the tile containing the given position
*/
void NearestTile(entity_pos_t x, entity_pos_t z, u16& i, u16& j)
{
i = (u16)clamp((x / (int)TERRAIN_TILE_SIZE).ToInt_RoundToZero(), 0, m_MapSize-1);
j = (u16)clamp((z / (int)TERRAIN_TILE_SIZE).ToInt_RoundToZero(), 0, m_MapSize-1);
}
/**
* Returns the position of the center of the given tile
*/
static void TileCenter(u16 i, u16 j, entity_pos_t& x, entity_pos_t& z)
{
x = entity_pos_t::FromInt(i*(int)TERRAIN_TILE_SIZE + (int)TERRAIN_TILE_SIZE/2);
z = entity_pos_t::FromInt(j*(int)TERRAIN_TILE_SIZE + (int)TERRAIN_TILE_SIZE/2);
}
static fixed DistanceToGoal(CFixedVector2D pos, const CCmpPathfinder::Goal& goal);
/**
* Regenerates the grid based on the current obstruction list, if necessary
*/
void UpdateGrid();
void RenderSubmit(SceneCollector& collector);
};
#endif // INCLUDED_CCMPPATHFINDER_COMMON