1
0
forked from 0ad/0ad
0ad/source/maths/Matrix3D.cpp
bb 157c6af18e Make the space in 0 A.D. non-breaking throughout the codebase.
Avoid cases of filenames
Update years in terms and other legal(ish) documents
Don't update years in license headers, since change is not meaningful

Will add linter rule in seperate commit

Happy recompiling everyone!

Original Patch By: Nescio
Comment By: Gallaecio
Differential Revision: D2620
This was SVN commit r27786.
2023-07-27 20:54:46 +00:00

445 lines
12 KiB
C++

/* Copyright (C) 2019 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* A Matrix class used for holding and manipulating transformation
* info.
*/
#include "precompiled.h"
#include "Matrix3D.h"
#include "Quaternion.h"
#include "Vector4D.h"
//Sets the identity matrix
void CMatrix3D::SetIdentity ()
{
_11=1.0f; _12=0.0f; _13=0.0f; _14=0.0f;
_21=0.0f; _22=1.0f; _23=0.0f; _24=0.0f;
_31=0.0f; _32=0.0f; _33=1.0f; _34=0.0f;
_41=0.0f; _42=0.0f; _43=0.0f; _44=1.0f;
}
//Sets the zero matrix
void CMatrix3D::SetZero()
{
_11=0.0f; _12=0.0f; _13=0.0f; _14=0.0f;
_21=0.0f; _22=0.0f; _23=0.0f; _24=0.0f;
_31=0.0f; _32=0.0f; _33=0.0f; _34=0.0f;
_41=0.0f; _42=0.0f; _43=0.0f; _44=0.0f;
}
void CMatrix3D::SetOrtho(float left, float right, float bottom, float top, float near, float far)
{
// Based on OpenGL spec
SetZero();
_11 = 2 / (right - left);
_22 = 2 / (top - bottom);
_33 = -2 / (far - near);
_44 = 1;
_14 = -(right + left) / (right - left);
_24 = -(top + bottom) / (top - bottom);
_34 = -(far + near) / (far - near);
}
void CMatrix3D::SetPerspective(float fov, float aspect, float near, float far)
{
const float f = 1.f / tanf(fov / 2.f);
SetZero();
_11 = f / aspect;
_22 = f;
_33 = -(far + near) / (near - far);
_34 = 2 * far * near / (near - far);
_43 = 1;
}
void CMatrix3D::SetPerspectiveTile(float fov, float aspect, float near, float far, int tiles, int tile_x, int tile_y)
{
const float f = 1.f / tanf(fov / 2.f);
SetPerspective(fov, aspect, near, far);
_11 = tiles * f / aspect;
_22 = tiles * f;
_13 = -(1 - tiles + 2 * tile_x);
_23 = -(1 - tiles + 2 * tile_y);
}
//The following clear the matrix and set the
//rotation of each of the 3 axes
void CMatrix3D::SetXRotation (float angle)
{
const float Cos = cosf (angle);
const float Sin = sinf (angle);
_11=1.0f; _12=0.0f; _13=0.0f; _14=0.0f;
_21=0.0f; _22=Cos; _23=-Sin; _24=0.0f;
_31=0.0f; _32=Sin; _33=Cos; _34=0.0f;
_41=0.0f; _42=0.0f; _43=0.0f; _44=1.0f;
}
void CMatrix3D::SetYRotation (float angle)
{
const float Cos = cosf (angle);
const float Sin = sinf (angle);
_11=Cos; _12=0.0f; _13=Sin; _14=0.0f;
_21=0.0f; _22=1.0f; _23=0.0f; _24=0.0f;
_31=-Sin; _32=0.0f; _33=Cos; _34=0.0f;
_41=0.0f; _42=0.0f; _43=0.0f; _44=1.0f;
}
void CMatrix3D::SetZRotation (float angle)
{
const float Cos = cosf (angle);
const float Sin = sinf (angle);
_11=Cos; _12=-Sin; _13=0.0f; _14=0.0f;
_21=Sin; _22=Cos; _23=0.0f; _24=0.0f;
_31=0.0f; _32=0.0f; _33=1.0f; _34=0.0f;
_41=0.0f; _42=0.0f; _43=0.0f; _44=1.0f;
}
//The following apply a rotation to the matrix
//about each of the axes;
void CMatrix3D::RotateX (float angle)
{
const float Cos = cosf (angle);
const float Sin = sinf (angle);
const float tmp_21 = _21;
const float tmp_22 = _22;
const float tmp_23 = _23;
const float tmp_24 = _24;
_21 = Cos * _21 - Sin * _31;
_22 = Cos * _22 - Sin * _32;
_23 = Cos * _23 - Sin * _33;
_24 = Cos * _24 - Sin * _34;
_31 = Sin * tmp_21 + Cos * _31;
_32 = Sin * tmp_22 + Cos * _32;
_33 = Sin * tmp_23 + Cos * _33;
_34 = Sin * tmp_24 + Cos * _34;
}
void CMatrix3D::RotateY (float angle)
{
const float Cos = cosf (angle);
const float Sin = sinf (angle);
const float tmp_11 = _11;
const float tmp_12 = _12;
const float tmp_13 = _13;
const float tmp_14 = _14;
_11 = Cos * _11 + Sin * _31;
_12 = Cos * _12 + Sin * _32;
_13 = Cos * _13 + Sin * _33;
_14 = Cos * _14 + Sin * _34;
_31 = -Sin * tmp_11 + Cos * _31;
_32 = -Sin * tmp_12 + Cos * _32;
_33 = -Sin * tmp_13 + Cos * _33;
_34 = -Sin * tmp_14 + Cos * _34;
}
void CMatrix3D::RotateZ (float angle)
{
const float Cos = cosf (angle);
const float Sin = sinf (angle);
const float tmp_11 = _11;
const float tmp_12 = _12;
const float tmp_13 = _13;
const float tmp_14 = _14;
_11 = Cos * _11 - Sin * _21;
_12 = Cos * _12 - Sin * _22;
_13 = Cos * _13 - Sin * _23;
_14 = Cos * _14 - Sin * _24;
_21 = Sin * tmp_11 + Cos * _21;
_22 = Sin * tmp_12 + Cos * _22;
_23 = Sin * tmp_13 + Cos * _23;
_24 = Sin * tmp_14 + Cos * _24;
}
//Sets the translation of the matrix
void CMatrix3D::SetTranslation (float x, float y, float z)
{
_11=1.0f; _12=0.0f; _13=0.0f; _14=x;
_21=0.0f; _22=1.0f; _23=0.0f; _24=y;
_31=0.0f; _32=0.0f; _33=1.0f; _34=z;
_41=0.0f; _42=0.0f; _43=0.0f; _44=1.0f;
}
void CMatrix3D::SetTranslation(const CVector3D& vector)
{
SetTranslation(vector.X, vector.Y, vector.Z);
}
//Applies a translation to the matrix
void CMatrix3D::Translate(float x, float y, float z)
{
_14 += x;
_24 += y;
_34 += z;
}
void CMatrix3D::Translate(const CVector3D &vector)
{
_14 += vector.X;
_24 += vector.Y;
_34 += vector.Z;
}
void CMatrix3D::PostTranslate(float x, float y, float z)
{
// Equivalent to "m.SetTranslation(x, y, z); *this = *this * m;"
_14 += _11*x + _12*y + _13*z;
_24 += _21*x + _22*y + _23*z;
_34 += _31*x + _32*y + _33*z;
_44 += _41*x + _42*y + _43*z;
}
CVector3D CMatrix3D::GetTranslation() const
{
return CVector3D(_14, _24, _34);
}
//Clears and sets the scaling of the matrix
void CMatrix3D::SetScaling (float x_scale, float y_scale, float z_scale)
{
_11=x_scale; _12=0.0f; _13=0.0f; _14=0.0f;
_21=0.0f; _22=y_scale; _23=0.0f; _24=0.0f;
_31=0.0f; _32=0.0f; _33=z_scale; _34=0.0f;
_41=0.0f; _42=0.0f; _43=0.0f; _44=1.0f;
}
//Scales the matrix
void CMatrix3D::Scale (float x_scale, float y_scale, float z_scale)
{
_11 *= x_scale;
_12 *= x_scale;
_13 *= x_scale;
_14 *= x_scale;
_21 *= y_scale;
_22 *= y_scale;
_23 *= y_scale;
_24 *= y_scale;
_31 *= z_scale;
_32 *= z_scale;
_33 *= z_scale;
_34 *= z_scale;
}
//Returns the transpose of the matrix. For orthonormal
//matrices, this is the same is the inverse matrix
CMatrix3D CMatrix3D::GetTranspose() const
{
return CMatrix3D(
_11, _21, _31, _41,
_12, _22, _32, _42,
_13, _23, _33, _43,
_14, _24, _34, _44);
}
//Get a vector which points to the left of the matrix
CVector3D CMatrix3D::GetLeft() const
{
return CVector3D(-_11, -_21, -_31);
}
//Get a vector which points up from the matrix
CVector3D CMatrix3D::GetUp() const
{
return CVector3D(_12, _22, _32);
}
//Get a vector which points to front of the matrix
CVector3D CMatrix3D::GetIn() const
{
return CVector3D(_13, _23, _33);
}
///////////////////////////////////////////////////////////////////////////////
// RotateTransposed: rotate a vector by the transpose of this matrix
CVector3D CMatrix3D::RotateTransposed(const CVector3D& vector) const
{
CVector3D result;
RotateTransposed(vector,result);
return result;
}
///////////////////////////////////////////////////////////////////////////////
// RotateTransposed: rotate a vector by the transpose of this matrix
void CMatrix3D::RotateTransposed(const CVector3D& vector,CVector3D& result) const
{
result.X = _11*vector.X + _21*vector.Y + _31*vector.Z;
result.Y = _12*vector.X + _22*vector.Y + _32*vector.Z;
result.Z = _13*vector.X + _23*vector.Y + _33*vector.Z;
}
void CMatrix3D::GetInverse(CMatrix3D& dst) const
{
float tmp[12]; // temp array for pairs
float src[16]; // array of transpose source matrix
float det; // determinant
// transpose matrix
for (int i = 0; i < 4; ++i) {
src[i] = _data[i*4];
src[i + 4] = _data[i*4 + 1];
src[i + 8] = _data[i*4 + 2];
src[i + 12] = _data[i*4 + 3];
}
// calculate pairs for first 8 elements (cofactors)
tmp[0] = src[10] * src[15];
tmp[1] = src[11] * src[14];
tmp[2] = src[9] * src[15];
tmp[3] = src[11] * src[13];
tmp[4] = src[9] * src[14];
tmp[5] = src[10] * src[13];
tmp[6] = src[8] * src[15];
tmp[7] = src[11] * src[12];
tmp[8] = src[8] * src[14];
tmp[9] = src[10] * src[12];
tmp[10] = src[8] * src[13];
tmp[11] = src[9] * src[12];
// calculate first 8 elements (cofactors)
dst._data[0] = (tmp[0]-tmp[1])*src[5] + (tmp[3]-tmp[2])*src[6] + (tmp[4]-tmp[5])*src[7];
dst._data[1] = (tmp[1]-tmp[0])*src[4] + (tmp[6]-tmp[7])*src[6] + (tmp[9]-tmp[8])*src[7];
dst._data[2] = (tmp[2]-tmp[3])*src[4] + (tmp[7]-tmp[6])*src[5] + (tmp[10]-tmp[11])*src[7];
dst._data[3] = (tmp[5]-tmp[4])*src[4] + (tmp[8]-tmp[9])*src[5] + (tmp[11]-tmp[10])*src[6];
dst._data[4] = (tmp[1]-tmp[0])*src[1] + (tmp[2]-tmp[3])*src[2] + (tmp[5]-tmp[4])*src[3];
dst._data[5] = (tmp[0]-tmp[1])*src[0] + (tmp[7]-tmp[6])*src[2] + (tmp[8]-tmp[9])*src[3];
dst._data[6] = (tmp[3]-tmp[2])*src[0] + (tmp[6]-tmp[7])*src[1] + (tmp[11]-tmp[10])*src[3];
dst._data[7] = (tmp[4]-tmp[5])*src[0] + (tmp[9]-tmp[8])*src[1] + (tmp[10]-tmp[11])*src[2];
// calculate pairs for second 8 elements (cofactors)
tmp[0] = src[2]*src[7];
tmp[1] = src[3]*src[6];
tmp[2] = src[1]*src[7];
tmp[3] = src[3]*src[5];
tmp[4] = src[1]*src[6];
tmp[5] = src[2]*src[5];
tmp[6] = src[0]*src[7];
tmp[7] = src[3]*src[4];
tmp[8] = src[0]*src[6];
tmp[9] = src[2]*src[4];
tmp[10] = src[0]*src[5];
tmp[11] = src[1]*src[4];
// calculate second 8 elements (cofactors)
dst._data[8] = (tmp[0]-tmp[1])*src[13] + (tmp[3]-tmp[2])*src[14] + (tmp[4]-tmp[5])*src[15];
dst._data[9] = (tmp[1]-tmp[0])*src[12] + (tmp[6]-tmp[7])*src[14] + (tmp[9]-tmp[8])*src[15];
dst._data[10] = (tmp[2]-tmp[3])*src[12] + (tmp[7]-tmp[6])*src[13] + (tmp[10]-tmp[11])*src[15];
dst._data[11] = (tmp[5]-tmp[4])*src[12] + (tmp[8]-tmp[9])*src[13] + (tmp[11]-tmp[10])*src[14];
dst._data[12] = (tmp[2]-tmp[3])*src[10] + (tmp[5]-tmp[4])*src[11] + (tmp[1]-tmp[0])*src[9];
dst._data[13] = (tmp[7]-tmp[6])*src[10] + (tmp[8]-tmp[9])*src[11] + (tmp[0]-tmp[1])*src[8];
dst._data[14] = (tmp[6]-tmp[7])*src[9] + (tmp[11]-tmp[10])*src[11] + (tmp[3]-tmp[2])*src[8];
dst._data[15] = (tmp[10]-tmp[11])*src[10] + (tmp[4]-tmp[5])*src[8] + (tmp[9]-tmp[8])*src[9];
// calculate matrix inverse
det=src[0]*dst._data[0]+src[1]*dst._data[1]+src[2]*dst._data[2]+src[3]*dst._data[3];
det = 1/det;
for ( int j = 0; j < 16; j++) {
dst._data[j] *= det;
}
}
CMatrix3D CMatrix3D::GetInverse() const
{
CMatrix3D r;
GetInverse(r);
return r;
}
void CMatrix3D::Rotate(const CQuaternion& quat)
{
CMatrix3D rotationMatrix=quat.ToMatrix();
Concatenate(rotationMatrix);
}
CQuaternion CMatrix3D::GetRotation() const
{
float tr = _data2d[0][0] + _data2d[1][1] + _data2d[2][2];
int next[] = { 1, 2, 0 };
float quat[4];
if (tr > 0.f)
{
float s = sqrtf(tr + 1.f);
quat[3] = s * 0.5f;
s = 0.5f / s;
quat[0] = (_data2d[1][2] - _data2d[2][1]) * s;
quat[1] = (_data2d[2][0] - _data2d[0][2]) * s;
quat[2] = (_data2d[0][1] - _data2d[1][0]) * s;
}
else
{
int i = 0;
if (_data2d[1][1] > _data2d[0][0]) i = 1;
if (_data2d[2][2] > _data2d[i][i]) i = 2;
int j = next[i];
int k = next[j];
float s = sqrtf((_data2d[i][i] - (_data2d[j][j] + _data2d[k][k])) + 1.f);
quat[i] = s * 0.5f;
if (s != 0.f) s = 0.5f / s;
quat[3] = (_data2d[j][k] - _data2d[k][j]) * s;
quat[j] = (_data2d[i][j] + _data2d[j][i]) * s;
quat[k] = (_data2d[i][k] + _data2d[k][i]) * s;
}
return CQuaternion(quat[0], quat[1], quat[2], quat[3]);
}
void CMatrix3D::SetRotation(const CQuaternion& quat)
{
quat.ToMatrix(*this);
}
float CMatrix3D::GetYRotation() const
{
// Project the X axis vector onto the XZ plane
CVector3D axis = -GetLeft();
axis.Y = 0;
// Normalise projected vector
float len = axis.Length();
if (len < 0.0001f)
return 0.f;
axis *= 1.0f/len;
// Negate the return angle to match the SetYRotation convention
return -atan2(axis.Z, axis.X);
}