1
1
forked from 0ad/0ad
0ad/source/ps/Profiler2.cpp
wraitii 3cbe96d24c Revamp Profiler2 to make it more usable.
Features include new graphs to compare runtime of functions and runtimes
across reports, as well as new profiling functions that only profile
spikes.

This was SVN commit r18423.
2016-06-22 13:38:05 +00:00

1000 lines
25 KiB
C++

/* Copyright (c) 2016 Wildfire Games
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "precompiled.h"
#include "Profiler2.h"
#include "lib/allocators/shared_ptr.h"
#include "ps/CLogger.h"
#include "ps/CStr.h"
#include "ps/Profiler2GPU.h"
#include "third_party/mongoose/mongoose.h"
#include <iomanip>
#include <unordered_map>
CProfiler2 g_Profiler2;
// A human-recognisable pattern (for debugging) followed by random bytes (for uniqueness)
const u8 CProfiler2::RESYNC_MAGIC[8] = {0x11, 0x22, 0x33, 0x44, 0xf4, 0x93, 0xbe, 0x15};
CProfiler2::CProfiler2() :
m_Initialised(false), m_FrameNumber(0), m_MgContext(NULL), m_GPU(NULL)
{
}
CProfiler2::~CProfiler2()
{
if (m_Initialised)
Shutdown();
}
/**
* Mongoose callback. Run in an arbitrary thread (possibly concurrently with other requests).
*/
static void* MgCallback(mg_event event, struct mg_connection *conn, const struct mg_request_info *request_info)
{
CProfiler2* profiler = (CProfiler2*)request_info->user_data;
ENSURE(profiler);
void* handled = (void*)""; // arbitrary non-NULL pointer to indicate successful handling
const char* header200 =
"HTTP/1.1 200 OK\r\n"
"Access-Control-Allow-Origin: *\r\n" // TODO: not great for security
"Content-Type: text/plain; charset=utf-8\r\n\r\n";
const char* header404 =
"HTTP/1.1 404 Not Found\r\n"
"Content-Type: text/plain; charset=utf-8\r\n\r\n"
"Unrecognised URI";
const char* header400 =
"HTTP/1.1 400 Bad Request\r\n"
"Content-Type: text/plain; charset=utf-8\r\n\r\n"
"Invalid request";
switch (event)
{
case MG_NEW_REQUEST:
{
std::stringstream stream;
std::string uri = request_info->uri;
if (uri == "/download")
{
profiler->SaveToFile();
}
else if (uri == "/overview")
{
profiler->ConstructJSONOverview(stream);
}
else if (uri == "/query")
{
if (!request_info->query_string)
{
mg_printf(conn, "%s (no query string)", header400);
return handled;
}
// Identify the requested thread
char buf[256];
int len = mg_get_var(request_info->query_string, strlen(request_info->query_string), "thread", buf, ARRAY_SIZE(buf));
if (len < 0)
{
mg_printf(conn, "%s (no 'thread')", header400);
return handled;
}
std::string thread(buf);
const char* err = profiler->ConstructJSONResponse(stream, thread);
if (err)
{
mg_printf(conn, "%s (%s)", header400, err);
return handled;
}
}
else
{
mg_printf(conn, "%s", header404);
return handled;
}
mg_printf(conn, "%s", header200);
std::string str = stream.str();
mg_write(conn, str.c_str(), str.length());
return handled;
}
case MG_HTTP_ERROR:
return NULL;
case MG_EVENT_LOG:
// Called by Mongoose's cry()
LOGERROR("Mongoose error: %s", request_info->log_message);
return NULL;
case MG_INIT_SSL:
return NULL;
default:
debug_warn(L"Invalid Mongoose event type");
return NULL;
}
};
void CProfiler2::Initialise()
{
ENSURE(!m_Initialised);
int err = pthread_key_create(&m_TLS, &CProfiler2::TLSDtor);
ENSURE(err == 0);
m_Initialised = true;
RegisterCurrentThread("main");
}
void CProfiler2::InitialiseGPU()
{
ENSURE(!m_GPU);
m_GPU = new CProfiler2GPU(*this);
}
void CProfiler2::EnableHTTP()
{
ENSURE(m_Initialised);
LOGMESSAGERENDER("Starting profiler2 HTTP server");
// Ignore multiple enablings
if (m_MgContext)
return;
const char *options[] = {
"listening_ports", "127.0.0.1:8000", // bind to localhost for security
"num_threads", "6", // enough for the browser's parallel connection limit
NULL
};
m_MgContext = mg_start(MgCallback, this, options);
ENSURE(m_MgContext);
}
void CProfiler2::EnableGPU()
{
ENSURE(m_Initialised);
if (!m_GPU)
{
LOGMESSAGERENDER("Starting profiler2 GPU mode");
InitialiseGPU();
}
}
void CProfiler2::ShutdownGPU()
{
LOGMESSAGERENDER("Shutting down profiler2 GPU mode");
SAFE_DELETE(m_GPU);
}
void CProfiler2::ShutDownHTTP()
{
LOGMESSAGERENDER("Shutting down profiler2 HTTP server");
if (m_MgContext)
{
mg_stop(m_MgContext);
m_MgContext = NULL;
}
}
void CProfiler2::Toggle()
{
// TODO: Maybe we can open the browser to the profiler page automatically
if (m_GPU && m_MgContext)
{
ShutdownGPU();
ShutDownHTTP();
}
else if (!m_GPU && !m_MgContext)
{
EnableGPU();
EnableHTTP();
}
}
void CProfiler2::Shutdown()
{
ENSURE(m_Initialised);
ENSURE(!m_GPU); // must shutdown GPU before profiler
if (m_MgContext)
{
mg_stop(m_MgContext);
m_MgContext = NULL;
}
// the destructor is not called for the main thread
// we have to call it manually to avoid memory leaks
ENSURE(ThreadUtil::IsMainThread());
void * dataptr = pthread_getspecific(m_TLS);
TLSDtor(dataptr);
int err = pthread_key_delete(m_TLS);
ENSURE(err == 0);
m_Initialised = false;
}
void CProfiler2::RecordGPUFrameStart()
{
if (m_GPU)
m_GPU->FrameStart();
}
void CProfiler2::RecordGPUFrameEnd()
{
if (m_GPU)
m_GPU->FrameEnd();
}
void CProfiler2::RecordGPURegionEnter(const char* id)
{
if (m_GPU)
m_GPU->RegionEnter(id);
}
void CProfiler2::RecordGPURegionLeave(const char* id)
{
if (m_GPU)
m_GPU->RegionLeave(id);
}
/**
* Called by pthreads when a registered thread is destroyed.
*/
void CProfiler2::TLSDtor(void* data)
{
ThreadStorage* storage = (ThreadStorage*)data;
storage->GetProfiler().RemoveThreadStorage(storage);
delete (ThreadStorage*)data;
}
void CProfiler2::RegisterCurrentThread(const std::string& name)
{
ENSURE(m_Initialised);
ENSURE(pthread_getspecific(m_TLS) == NULL); // mustn't register a thread more than once
ThreadStorage* storage = new ThreadStorage(*this, name);
int err = pthread_setspecific(m_TLS, storage);
ENSURE(err == 0);
RecordSyncMarker();
RecordEvent("thread start");
AddThreadStorage(storage);
}
void CProfiler2::AddThreadStorage(ThreadStorage* storage)
{
CScopeLock lock(m_Mutex);
m_Threads.push_back(storage);
}
void CProfiler2::RemoveThreadStorage(ThreadStorage* storage)
{
CScopeLock lock(m_Mutex);
m_Threads.erase(std::find(m_Threads.begin(), m_Threads.end(), storage));
}
CProfiler2::ThreadStorage::ThreadStorage(CProfiler2& profiler, const std::string& name) :
m_Profiler(profiler), m_Name(name), m_BufferPos0(0), m_BufferPos1(0), m_LastTime(timer_Time()), m_HeldDepth(0)
{
m_Buffer = new u8[BUFFER_SIZE];
memset(m_Buffer, ITEM_NOP, BUFFER_SIZE);
}
CProfiler2::ThreadStorage::~ThreadStorage()
{
delete[] m_Buffer;
}
void CProfiler2::ThreadStorage::Write(EItem type, const void* item, u32 itemSize)
{
if (m_HeldDepth > 0)
{
WriteHold(type, item, itemSize);
return;
}
// See m_BufferPos0 etc for comments on synchronisation
u32 size = 1 + itemSize;
u32 start = m_BufferPos0;
if (start + size > BUFFER_SIZE)
{
// The remainder of the buffer is too small - fill the rest
// with NOPs then start from offset 0, so we don't have to
// bother splitting the real item across the end of the buffer
m_BufferPos0 = size;
COMPILER_FENCE; // must write m_BufferPos0 before m_Buffer
memset(m_Buffer + start, 0, BUFFER_SIZE - start);
start = 0;
}
else
{
m_BufferPos0 = start + size;
COMPILER_FENCE; // must write m_BufferPos0 before m_Buffer
}
m_Buffer[start] = (u8)type;
memcpy(&m_Buffer[start + 1], item, itemSize);
COMPILER_FENCE; // must write m_BufferPos1 after m_Buffer
m_BufferPos1 = start + size;
}
void CProfiler2::ThreadStorage::WriteHold(EItem type, const void* item, u32 itemSize)
{
u32 size = 1 + itemSize;
if (m_HoldBuffers[m_HeldDepth - 1].pos + size > CProfiler2::HOLD_BUFFER_SIZE)
return; // we held on too much data, ignore the rest
m_HoldBuffers[m_HeldDepth - 1].buffer[m_HoldBuffers[m_HeldDepth - 1].pos] = (u8)type;
memcpy(&m_HoldBuffers[m_HeldDepth - 1].buffer[m_HoldBuffers[m_HeldDepth - 1].pos + 1], item, itemSize);
m_HoldBuffers[m_HeldDepth - 1].pos += size;
}
std::string CProfiler2::ThreadStorage::GetBuffer()
{
// Called from an arbitrary thread (not the one writing to the buffer).
//
// See comments on m_BufferPos0 etc.
shared_ptr<u8> buffer(new u8[BUFFER_SIZE], ArrayDeleter());
u32 pos1 = m_BufferPos1;
COMPILER_FENCE; // must read m_BufferPos1 before m_Buffer
memcpy(buffer.get(), m_Buffer, BUFFER_SIZE);
COMPILER_FENCE; // must read m_BufferPos0 after m_Buffer
u32 pos0 = m_BufferPos0;
// The range [pos1, pos0) modulo BUFFER_SIZE is invalid, so concatenate the rest of the buffer
if (pos1 <= pos0) // invalid range is in the middle of the buffer
return std::string(buffer.get()+pos0, buffer.get()+BUFFER_SIZE) + std::string(buffer.get(), buffer.get()+pos1);
else // invalid wrap is wrapped around the end/start buffer
return std::string(buffer.get()+pos0, buffer.get()+pos1);
}
void CProfiler2::ThreadStorage::RecordAttribute(const char* fmt, va_list argp)
{
char buffer[MAX_ATTRIBUTE_LENGTH + 4] = {0}; // first 4 bytes are used for storing length
int len = vsnprintf(buffer + 4, MAX_ATTRIBUTE_LENGTH - 1, fmt, argp); // subtract 1 from length to make MSVC vsnprintf safe
// (Don't use vsprintf_s because it treats overflow as fatal)
// Terminate the string if the printing was truncated
if (len < 0 || len >= (int)MAX_ATTRIBUTE_LENGTH - 1)
{
strncpy(buffer + 4 + MAX_ATTRIBUTE_LENGTH - 4, "...", 4);
len = MAX_ATTRIBUTE_LENGTH - 1; // excluding null terminator
}
// Store the length in the buffer
memcpy(buffer, &len, sizeof(len));
Write(ITEM_ATTRIBUTE, buffer, 4 + len);
}
size_t CProfiler2::ThreadStorage::HoldLevel()
{
return m_HeldDepth;
}
u8 CProfiler2::ThreadStorage::HoldType()
{
return m_HoldBuffers[m_HeldDepth - 1].type;
}
void CProfiler2::ThreadStorage::PutOnHold(u8 newType)
{
m_HeldDepth++;
m_HoldBuffers[m_HeldDepth - 1].clear();
m_HoldBuffers[m_HeldDepth - 1].setType(newType);
}
// this flattens the stack, use it sensibly
void rewriteBuffer(u8* buffer, u32& bufferSize)
{
double startTime = timer_Time();
u32 size = bufferSize;
u32 readPos = 0;
double initialTime = -1;
double total_time = -1;
const char* regionName;
std::set<std::string> topLevelArgs;
typedef std::tuple<const char*, double, std::set<std::string> > infoPerType;
std::unordered_map<std::string, infoPerType> timeByType;
std::vector<double> last_time_stack;
std::vector<const char*> last_names;
// never too many hacks
std::string current_attribute = "";
std::map<std::string, double> time_per_attribute;
// Let's read the first event
{
u8 type = buffer[readPos];
++readPos;
if (type != CProfiler2::ITEM_ENTER)
{
debug_warn("Profiler2: Condensing a region should run into ITEM_ENTER first");
return; // do nothing
}
CProfiler2::SItem_dt_id item;
memcpy(&item, buffer + readPos, sizeof(item));
readPos += sizeof(item);
regionName = item.id;
last_names.push_back(item.id);
initialTime = (double)item.dt;
}
int enter = 1;
int leaves = 0;
// Read subsequent events. Flatten hierarchy because it would get too complicated otherwise.
// To make sure time doesn't bloat, subtract time from nested events
while (readPos < size)
{
u8 type = buffer[readPos];
++readPos;
switch (type)
{
case CProfiler2::ITEM_NOP:
{
// ignore
break;
}
case CProfiler2::ITEM_SYNC:
{
debug_warn("Aggregated regions should not be used across frames");
// still try to act sane
readPos += sizeof(double);
readPos += sizeof(CProfiler2::RESYNC_MAGIC);
break;
}
case CProfiler2::ITEM_EVENT:
{
// skip for now
readPos += sizeof(CProfiler2::SItem_dt_id);
break;
}
case CProfiler2::ITEM_ENTER:
{
enter++;
CProfiler2::SItem_dt_id item;
memcpy(&item, buffer + readPos, sizeof(item));
readPos += sizeof(item);
last_time_stack.push_back((double)item.dt);
last_names.push_back(item.id);
current_attribute = "";
break;
}
case CProfiler2::ITEM_LEAVE:
{
float item_time;
memcpy(&item_time, buffer + readPos, sizeof(float));
readPos += sizeof(float);
leaves++;
if (last_names.empty())
{
// we somehow lost the first entry in the process
debug_warn("Invalid buffer for condensing");
}
const char* item_name = last_names.back();
last_names.pop_back();
if (last_time_stack.empty())
{
// this is the leave for the whole scope
total_time = (double)item_time;
break;
}
double time = (double)item_time - last_time_stack.back();
std::string name = std::string(item_name);
auto TimeForType = timeByType.find(name);
if (TimeForType == timeByType.end())
{
// keep reference to the original char pointer to make sure we don't break things down the line
std::get<0>(timeByType[name]) = item_name;
std::get<1>(timeByType[name]) = 0;
}
std::get<1>(timeByType[name]) += time;
last_time_stack.pop_back();
// if we were nested, subtract our time from the below scope by making it look like it starts later
if (!last_time_stack.empty())
last_time_stack.back() += time;
if (!current_attribute.empty())
{
time_per_attribute[current_attribute] += time;
}
break;
}
case CProfiler2::ITEM_ATTRIBUTE:
{
// skip for now
u32 len;
memcpy(&len, buffer + readPos, sizeof(len));
ENSURE(len <= CProfiler2::MAX_ATTRIBUTE_LENGTH);
readPos += sizeof(len);
char message[CProfiler2::MAX_ATTRIBUTE_LENGTH] = {0};
memcpy(&message[0], buffer + readPos, len);
CStr mess = CStr((const char*)message, len);
if (!last_names.empty())
{
auto it = timeByType.find(std::string(last_names.back()));
if (it == timeByType.end())
topLevelArgs.insert(mess);
else
std::get<2>(timeByType[std::string(last_names.back())]).insert(mess);
}
readPos += len;
current_attribute = mess;
break;
}
default:
debug_warn(L"Invalid profiler item when condensing buffer");
continue;
}
}
// rewrite the buffer
// what we rewrite will always be smaller than the current buffer's size
u32 writePos = 0;
double curTime = initialTime;
// the region enter
{
CProfiler2::SItem_dt_id item = { curTime, regionName };
buffer[writePos] = (u8)CProfiler2::ITEM_ENTER;
memcpy(buffer + writePos + 1, &item, sizeof(item));
writePos += sizeof(item) + 1;
// add a nanosecond for sanity
curTime += 0.000001;
}
// sub-events, aggregated
for (auto& type : timeByType)
{
CProfiler2::SItem_dt_id item = { curTime, std::get<0>(type.second) };
buffer[writePos] = (u8)CProfiler2::ITEM_ENTER;
memcpy(buffer + writePos + 1, &item, sizeof(item));
writePos += sizeof(item) + 1;
// write relevant attributes if present
for (const auto& attrib : std::get<2>(type.second))
{
buffer[writePos] = (u8)CProfiler2::ITEM_ATTRIBUTE;
writePos++;
std::string basic = attrib;
auto time_attrib = time_per_attribute.find(attrib);
if (time_attrib != time_per_attribute.end())
basic += " " + CStr::FromInt(1000000*time_attrib->second) + "us";
u32 length = basic.size();
memcpy(buffer + writePos, &length, sizeof(length));
writePos += sizeof(length);
memcpy(buffer + writePos, basic.c_str(), length);
writePos += length;
}
curTime += std::get<1>(type.second);
float leave_time = (float)curTime;
buffer[writePos] = (u8)CProfiler2::ITEM_LEAVE;
memcpy(buffer + writePos + 1, &leave_time, sizeof(float));
writePos += sizeof(float) + 1;
}
// Time of computation
{
CProfiler2::SItem_dt_id item = { curTime, "CondenseBuffer" };
buffer[writePos] = (u8)CProfiler2::ITEM_ENTER;
memcpy(buffer + writePos + 1, &item, sizeof(item));
writePos += sizeof(item) + 1;
}
{
float time_out = (float)(curTime + timer_Time() - startTime);
buffer[writePos] = (u8)CProfiler2::ITEM_LEAVE;
memcpy(buffer + writePos + 1, &time_out, sizeof(float));
writePos += sizeof(float) + 1;
// add a nanosecond for sanity
curTime += 0.000001;
}
// the region leave
{
if (total_time < 0)
{
total_time = curTime + 0.000001;
buffer[writePos] = (u8)CProfiler2::ITEM_ATTRIBUTE;
writePos++;
u32 length = sizeof("buffer overflow");
memcpy(buffer + writePos, &length, sizeof(length));
writePos += sizeof(length);
memcpy(buffer + writePos, "buffer overflow", length);
writePos += length;
}
else if (total_time < curTime)
{
// this seems to happen on rare occasions.
curTime = total_time;
}
float leave_time = (float)total_time;
buffer[writePos] = (u8)CProfiler2::ITEM_LEAVE;
memcpy(buffer + writePos + 1, &leave_time, sizeof(float));
writePos += sizeof(float) + 1;
}
bufferSize = writePos;
}
void CProfiler2::ThreadStorage::HoldToBuffer(bool condensed)
{
ENSURE(m_HeldDepth);
if (condensed)
{
// rewrite the buffer to show aggregated data
rewriteBuffer(m_HoldBuffers[m_HeldDepth - 1].buffer, m_HoldBuffers[m_HeldDepth - 1].pos);
}
if (m_HeldDepth > 1)
{
// copy onto buffer below
HoldBuffer& copied = m_HoldBuffers[m_HeldDepth - 1];
HoldBuffer& target = m_HoldBuffers[m_HeldDepth - 2];
if (target.pos + copied.pos > HOLD_BUFFER_SIZE)
return; // too much data, too bad
memcpy(&target.buffer[target.pos], copied.buffer, copied.pos);
target.pos += copied.pos;
}
else
{
u32 size = m_HoldBuffers[m_HeldDepth - 1].pos;
u32 start = m_BufferPos0;
if (start + size > BUFFER_SIZE)
{
m_BufferPos0 = size;
COMPILER_FENCE;
memset(m_Buffer + start, 0, BUFFER_SIZE - start);
start = 0;
}
else
{
m_BufferPos0 = start + size;
COMPILER_FENCE; // must write m_BufferPos0 before m_Buffer
}
memcpy(&m_Buffer[start], m_HoldBuffers[m_HeldDepth - 1].buffer, size);
COMPILER_FENCE; // must write m_BufferPos1 after m_Buffer
m_BufferPos1 = start + size;
}
m_HeldDepth--;
}
void CProfiler2::ThreadStorage::ThrowawayHoldBuffer()
{
if (!m_HeldDepth)
return;
m_HeldDepth--;
}
void CProfiler2::ConstructJSONOverview(std::ostream& stream)
{
TIMER(L"profile2 overview");
CScopeLock lock(m_Mutex);
stream << "{\"threads\":[";
for (size_t i = 0; i < m_Threads.size(); ++i)
{
if (i != 0)
stream << ",";
stream << "{\"name\":\"" << CStr(m_Threads[i]->GetName()).EscapeToPrintableASCII() << "\"}";
}
stream << "]}";
}
/**
* Given a buffer and a visitor class (with functions OnEvent, OnEnter, OnLeave, OnAttribute),
* calls the visitor for every item in the buffer.
*/
template<typename V>
void RunBufferVisitor(const std::string& buffer, V& visitor)
{
TIMER(L"profile2 visitor");
// The buffer doesn't necessarily start at the beginning of an item
// (we just grabbed it from some arbitrary point in the middle),
// so scan forwards until we find a sync marker.
// (This is probably pretty inefficient.)
u32 realStart = (u32)-1; // the start point decided by the scan algorithm
for (u32 start = 0; start + 1 + sizeof(CProfiler2::RESYNC_MAGIC) <= buffer.length(); ++start)
{
if (buffer[start] == CProfiler2::ITEM_SYNC
&& memcmp(buffer.c_str() + start + 1, &CProfiler2::RESYNC_MAGIC, sizeof(CProfiler2::RESYNC_MAGIC)) == 0)
{
realStart = start;
break;
}
}
ENSURE(realStart != (u32)-1); // we should have found a sync point somewhere in the buffer
u32 pos = realStart; // the position as we step through the buffer
double lastTime = -1;
// set to non-negative by EVENT_SYNC; we ignore all items before that
// since we can't compute their absolute times
while (pos < buffer.length())
{
u8 type = buffer[pos];
++pos;
switch (type)
{
case CProfiler2::ITEM_NOP:
{
// ignore
break;
}
case CProfiler2::ITEM_SYNC:
{
u8 magic[sizeof(CProfiler2::RESYNC_MAGIC)];
double t;
memcpy(magic, buffer.c_str()+pos, ARRAY_SIZE(magic));
ENSURE(memcmp(magic, &CProfiler2::RESYNC_MAGIC, sizeof(CProfiler2::RESYNC_MAGIC)) == 0);
pos += sizeof(CProfiler2::RESYNC_MAGIC);
memcpy(&t, buffer.c_str()+pos, sizeof(t));
pos += sizeof(t);
lastTime = t;
visitor.OnSync(lastTime);
break;
}
case CProfiler2::ITEM_EVENT:
{
CProfiler2::SItem_dt_id item;
memcpy(&item, buffer.c_str()+pos, sizeof(item));
pos += sizeof(item);
if (lastTime >= 0)
{
visitor.OnEvent(lastTime + (double)item.dt, item.id);
}
break;
}
case CProfiler2::ITEM_ENTER:
{
CProfiler2::SItem_dt_id item;
memcpy(&item, buffer.c_str()+pos, sizeof(item));
pos += sizeof(item);
if (lastTime >= 0)
{
visitor.OnEnter(lastTime + (double)item.dt, item.id);
}
break;
}
case CProfiler2::ITEM_LEAVE:
{
float leave_time;
memcpy(&leave_time, buffer.c_str() + pos, sizeof(float));
pos += sizeof(float);
if (lastTime >= 0)
{
visitor.OnLeave(lastTime + (double)leave_time);
}
break;
}
case CProfiler2::ITEM_ATTRIBUTE:
{
u32 len;
memcpy(&len, buffer.c_str()+pos, sizeof(len));
ENSURE(len <= CProfiler2::MAX_ATTRIBUTE_LENGTH);
pos += sizeof(len);
std::string attribute(buffer.c_str()+pos, buffer.c_str()+pos+len);
pos += len;
if (lastTime >= 0)
{
visitor.OnAttribute(attribute);
}
break;
}
default:
debug_warn(L"Invalid profiler item when parsing buffer");
return;
}
}
};
/**
* Visitor class that dumps events as JSON.
* TODO: this is pretty inefficient (in implementation and in output format).
*/
struct BufferVisitor_Dump
{
NONCOPYABLE(BufferVisitor_Dump);
public:
BufferVisitor_Dump(std::ostream& stream) : m_Stream(stream)
{
}
void OnSync(double UNUSED(time))
{
// Split the array of items into an array of array (arbitrarily splitting
// around the sync points) to avoid array-too-large errors in JSON decoders
m_Stream << "null], [\n";
}
void OnEvent(double time, const char* id)
{
m_Stream << "[1," << std::fixed << std::setprecision(9) << time;
m_Stream << ",\"" << CStr(id).EscapeToPrintableASCII() << "\"],\n";
}
void OnEnter(double time, const char* id)
{
m_Stream << "[2," << std::fixed << std::setprecision(9) << time;
m_Stream << ",\"" << CStr(id).EscapeToPrintableASCII() << "\"],\n";
}
void OnLeave(double time)
{
m_Stream << "[3," << std::fixed << std::setprecision(9) << time << "],\n";
}
void OnAttribute(const std::string& attr)
{
m_Stream << "[4,\"" << CStr(attr).EscapeToPrintableASCII() << "\"],\n";
}
std::ostream& m_Stream;
};
const char* CProfiler2::ConstructJSONResponse(std::ostream& stream, const std::string& thread)
{
TIMER(L"profile2 query");
std::string buffer;
{
TIMER(L"profile2 get buffer");
CScopeLock lock(m_Mutex); // lock against changes to m_Threads or deletions of ThreadStorage
ThreadStorage* storage = NULL;
for (size_t i = 0; i < m_Threads.size(); ++i)
{
if (m_Threads[i]->GetName() == thread)
{
storage = m_Threads[i];
break;
}
}
if (!storage)
return "cannot find named thread";
stream << "{\"events\":[\n";
stream << "[\n";
buffer = storage->GetBuffer();
}
BufferVisitor_Dump visitor(stream);
RunBufferVisitor(buffer, visitor);
stream << "null]\n]}";
return NULL;
}
void CProfiler2::SaveToFile()
{
OsPath path = psLogDir()/"profile2.jsonp";
std::ofstream stream(OsString(path).c_str(), std::ofstream::out | std::ofstream::trunc);
ENSURE(stream.good());
std::vector<ThreadStorage*> threads;
{
CScopeLock lock(m_Mutex);
threads = m_Threads;
}
stream << "profileDataCB({\"threads\": [\n";
for (size_t i = 0; i < threads.size(); ++i)
{
if (i != 0)
stream << ",\n";
stream << "{\"name\":\"" << CStr(threads[i]->GetName()).EscapeToPrintableASCII() << "\",\n";
stream << "\"data\": ";
ConstructJSONResponse(stream, threads[i]->GetName());
stream << "\n}";
}
stream << "\n]});\n";
}
CProfile2SpikeRegion::CProfile2SpikeRegion(const char* name, double spikeLimit) :
m_Name(name), m_Limit(spikeLimit), m_PushedHold(true)
{
if (g_Profiler2.HoldLevel() < 8 && g_Profiler2.HoldType() != CProfiler2::ThreadStorage::BUFFER_AGGREGATE)
g_Profiler2.HoldMessages(CProfiler2::ThreadStorage::BUFFER_SPIKE);
else
m_PushedHold = false;
COMPILER_FENCE;
g_Profiler2.RecordRegionEnter(m_Name);
m_StartTime = g_Profiler2.GetTime();
}
CProfile2SpikeRegion::~CProfile2SpikeRegion()
{
double time = g_Profiler2.GetTime();
g_Profiler2.RecordRegionLeave();
bool shouldWrite = time - m_StartTime > m_Limit;
if (m_PushedHold)
g_Profiler2.StopHoldingMessages(shouldWrite);
}
CProfile2AggregatedRegion::CProfile2AggregatedRegion(const char* name, double spikeLimit) :
m_Name(name), m_Limit(spikeLimit), m_PushedHold(true)
{
if (g_Profiler2.HoldLevel() < 8 && g_Profiler2.HoldType() != CProfiler2::ThreadStorage::BUFFER_AGGREGATE)
g_Profiler2.HoldMessages(CProfiler2::ThreadStorage::BUFFER_AGGREGATE);
else
m_PushedHold = false;
COMPILER_FENCE;
g_Profiler2.RecordRegionEnter(m_Name);
m_StartTime = g_Profiler2.GetTime();
}
CProfile2AggregatedRegion::~CProfile2AggregatedRegion()
{
double time = g_Profiler2.GetTime();
g_Profiler2.RecordRegionLeave();
bool shouldWrite = time - m_StartTime > m_Limit;
if (m_PushedHold)
g_Profiler2.StopHoldingMessages(shouldWrite, true);
}