1
1
forked from 0ad/0ad
0ad/source/renderer/OverlayRenderer.cpp
elexis 5d2c20beb0 Replace boost::unordered_map, boost::unordered_set with std::unordered_map, std::unordered_set to establish consistency.
Replace boost::hash_combine with a lib/hash.h hash_combine performing
the same statement.
Replace inconspicuous global boost hash_value specializations with
std::hash specializations.
No performance difference was observed in three simple MeshManager
measurements.

Remove unused TAG_MASK and h_tag in h_mgr.cpp following 0748c5a75e.
Replace typedef with using keyword and sort header includes.

Differential Revision: https://code.wildfiregames.com/D2441
Tested on: clang  9.0.0, gcc 9.2.0, Jenkins/vs2015, Jenkins/gcc6

This was SVN commit r23191.
2019-11-25 14:30:25 +00:00

781 lines
24 KiB
C++

/* Copyright (C) 2019 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "OverlayRenderer.h"
#include "graphics/LOSTexture.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "graphics/TextureManager.h"
#include "lib/hash.h"
#include "lib/ogl.h"
#include "maths/MathUtil.h"
#include "maths/Quaternion.h"
#include "ps/Game.h"
#include "ps/Profile.h"
#include "renderer/Renderer.h"
#include "renderer/TexturedLineRData.h"
#include "renderer/VertexArray.h"
#include "renderer/VertexBuffer.h"
#include "renderer/VertexBufferManager.h"
#include "simulation2/components/ICmpWaterManager.h"
#include "simulation2/Simulation2.h"
#include "simulation2/system/SimContext.h"
#include <unordered_map>
/**
* Key used to group quads into batches for more efficient rendering. Currently groups by the combination
* of the main texture and the texture mask, to minimize texture swapping during rendering.
*/
struct QuadBatchKey
{
QuadBatchKey (const CTexturePtr& texture, const CTexturePtr& textureMask)
: m_Texture(texture), m_TextureMask(textureMask)
{ }
bool operator==(const QuadBatchKey& other) const
{
return (m_Texture == other.m_Texture && m_TextureMask == other.m_TextureMask);
}
CTexturePtr m_Texture;
CTexturePtr m_TextureMask;
};
struct QuadBatchHash
{
std::size_t operator()(const QuadBatchKey& d) const
{
size_t seed = 0;
hash_combine(seed, d.m_Texture);
hash_combine(seed, d.m_TextureMask);
return seed;
}
};
/**
* Holds information about a single quad rendering batch.
*/
class QuadBatchData : public CRenderData
{
public:
QuadBatchData() : m_IndicesBase(0), m_NumRenderQuads(0) { }
/// Holds the quad overlay structures requested to be rendered in this batch. Must be cleared
/// after each frame.
std::vector<SOverlayQuad*> m_Quads;
/// Start index of this batch into the dedicated quad indices VertexArray (see OverlayInternals).
size_t m_IndicesBase;
/// Amount of quads to actually render in this batch. Potentially (although unlikely to be)
/// different from m_Quads.size() due to restrictions on the total amount of quads that can be
/// rendered. Must be reset after each frame.
size_t m_NumRenderQuads;
};
struct OverlayRendererInternals
{
using QuadBatchMap = std::unordered_map<QuadBatchKey, QuadBatchData, QuadBatchHash>;
OverlayRendererInternals();
~OverlayRendererInternals(){ }
std::vector<SOverlayLine*> lines;
std::vector<SOverlayTexturedLine*> texlines;
std::vector<SOverlaySprite*> sprites;
std::vector<SOverlayQuad*> quads;
std::vector<SOverlaySphere*> spheres;
QuadBatchMap quadBatchMap;
// Dedicated vertex/index buffers for rendering all quads (to within the limits set by
// MAX_QUAD_OVERLAYS).
VertexArray quadVertices;
VertexArray::Attribute quadAttributePos;
VertexArray::Attribute quadAttributeColor;
VertexArray::Attribute quadAttributeUV;
VertexIndexArray quadIndices;
/// Maximum amount of quad overlays we support for rendering. This limit is set to be able to
/// render all quads from a single dedicated VB without having to reallocate it, which is much
/// faster in the typical case of rendering only a handful of quads. When modifying this value,
/// you must take care for the new amount of quads to fit in a single VBO (which is not likely
/// to be a problem).
static const size_t MAX_QUAD_OVERLAYS = 1024;
// Sets of commonly-(re)used shader defines.
CShaderDefines defsOverlayLineNormal;
CShaderDefines defsOverlayLineAlwaysVisible;
CShaderDefines defsQuadOverlay;
// Geometry for a unit sphere
std::vector<float> sphereVertexes;
std::vector<u16> sphereIndexes;
void GenerateSphere();
/// Performs one-time setup. Called from CRenderer::Open, after graphics capabilities have
/// been detected. Note that no VBOs must be created before this is called, since the shader
/// path and graphics capabilities are not guaranteed to be stable before this point.
void Initialize();
};
const float OverlayRenderer::OVERLAY_VOFFSET = 0.2f;
OverlayRendererInternals::OverlayRendererInternals()
: quadVertices(GL_DYNAMIC_DRAW), quadIndices(GL_STATIC_DRAW)
{
quadAttributePos.elems = 3;
quadAttributePos.type = GL_FLOAT;
quadVertices.AddAttribute(&quadAttributePos);
quadAttributeColor.elems = 4;
quadAttributeColor.type = GL_FLOAT;
quadVertices.AddAttribute(&quadAttributeColor);
quadAttributeUV.elems = 2;
quadAttributeUV.type = GL_SHORT; // don't use GL_UNSIGNED_SHORT here, TexCoordPointer won't accept it
quadVertices.AddAttribute(&quadAttributeUV);
// Note that we're reusing the textured overlay line shader for the quad overlay rendering. This
// is because their code is almost identical; the only difference is that for the quad overlays
// we want to use a vertex color stream as opposed to an objectColor uniform. To this end, the
// shader has been set up to switch between the two behaviours based on the USE_OBJECTCOLOR define.
defsOverlayLineNormal.Add(str_USE_OBJECTCOLOR, str_1);
defsOverlayLineAlwaysVisible.Add(str_USE_OBJECTCOLOR, str_1);
defsOverlayLineAlwaysVisible.Add(str_IGNORE_LOS, str_1);
}
void OverlayRendererInternals::Initialize()
{
// Perform any initialization after graphics capabilities have been detected. Notably,
// only at this point can we safely allocate VBOs (in contrast to e.g. in the constructor),
// because their creation depends on the shader path, which is not reliably set before this point.
quadVertices.SetNumVertices(MAX_QUAD_OVERLAYS * 4);
quadVertices.Layout(); // allocate backing store
quadIndices.SetNumVertices(MAX_QUAD_OVERLAYS * 6);
quadIndices.Layout(); // allocate backing store
// Since the quads in the vertex array are independent and always consist of exactly 4 vertices per quad, the
// indices are always the same; we can therefore fill in all the indices once and pretty much forget about
// them. We then also no longer need its backing store, since we never change any indices afterwards.
VertexArrayIterator<u16> index = quadIndices.GetIterator();
for (size_t i = 0; i < MAX_QUAD_OVERLAYS; ++i)
{
*index++ = i*4 + 0;
*index++ = i*4 + 1;
*index++ = i*4 + 2;
*index++ = i*4 + 2;
*index++ = i*4 + 3;
*index++ = i*4 + 0;
}
quadIndices.Upload();
quadIndices.FreeBackingStore();
}
OverlayRenderer::OverlayRenderer()
{
m = new OverlayRendererInternals();
}
OverlayRenderer::~OverlayRenderer()
{
delete m;
}
void OverlayRenderer::Initialize()
{
m->Initialize();
}
void OverlayRenderer::Submit(SOverlayLine* line)
{
ENSURE(line->m_Coords.size() % 3 == 0);
m->lines.push_back(line);
}
void OverlayRenderer::Submit(SOverlayTexturedLine* line)
{
// Simplify the rest of the code by guaranteeing non-empty lines
if (line->m_Coords.empty())
return;
ENSURE(line->m_Coords.size() % 2 == 0);
m->texlines.push_back(line);
}
void OverlayRenderer::Submit(SOverlaySprite* overlay)
{
m->sprites.push_back(overlay);
}
void OverlayRenderer::Submit(SOverlayQuad* overlay)
{
m->quads.push_back(overlay);
}
void OverlayRenderer::Submit(SOverlaySphere* overlay)
{
m->spheres.push_back(overlay);
}
void OverlayRenderer::EndFrame()
{
m->lines.clear();
m->texlines.clear();
m->sprites.clear();
m->quads.clear();
m->spheres.clear();
// this should leave the capacity unchanged, which is okay since it
// won't be very large or very variable
// Empty the batch rendering data structures, but keep their key mappings around for the next frames
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it)
{
QuadBatchData& quadBatchData = (it->second);
quadBatchData.m_Quads.clear();
quadBatchData.m_NumRenderQuads = 0;
quadBatchData.m_IndicesBase = 0;
}
}
void OverlayRenderer::PrepareForRendering()
{
PROFILE3("prepare overlays");
// This is where we should do something like sort the overlays by
// color/sprite/etc for more efficient rendering
for (size_t i = 0; i < m->texlines.size(); ++i)
{
SOverlayTexturedLine* line = m->texlines[i];
if (!line->m_RenderData)
{
line->m_RenderData = shared_ptr<CTexturedLineRData>(new CTexturedLineRData());
line->m_RenderData->Update(*line);
// We assume the overlay line will get replaced by the caller
// if terrain changes, so we don't need to detect that here and
// call Update again. Also we assume the caller won't change
// any of the parameters after first submitting the line.
}
}
// Group quad overlays by their texture/mask combination for efficient rendering
// TODO: consider doing this directly in Submit()
for (size_t i = 0; i < m->quads.size(); ++i)
{
SOverlayQuad* const quad = m->quads[i];
QuadBatchKey textures(quad->m_Texture, quad->m_TextureMask);
QuadBatchData& batchRenderData = m->quadBatchMap[textures]; // will create entry if it doesn't already exist
// add overlay to list of quads
batchRenderData.m_Quads.push_back(quad);
}
const CVector3D vOffset(0, OverlayRenderer::OVERLAY_VOFFSET, 0);
// Write quad overlay vertices/indices to VA backing store
VertexArrayIterator<CVector3D> vertexPos = m->quadAttributePos.GetIterator<CVector3D>();
VertexArrayIterator<CVector4D> vertexColor = m->quadAttributeColor.GetIterator<CVector4D>();
VertexArrayIterator<short[2]> vertexUV = m->quadAttributeUV.GetIterator<short[2]>();
size_t indicesIdx = 0;
size_t totalNumQuads = 0;
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it)
{
QuadBatchData& batchRenderData = (it->second);
batchRenderData.m_NumRenderQuads = 0;
if (batchRenderData.m_Quads.empty())
continue;
// Remember the current index into the (entire) indices array as our base offset for this batch
batchRenderData.m_IndicesBase = indicesIdx;
// points to the index where each iteration's vertices will be appended
for (size_t i = 0; i < batchRenderData.m_Quads.size() && totalNumQuads < OverlayRendererInternals::MAX_QUAD_OVERLAYS; i++)
{
const SOverlayQuad* quad = batchRenderData.m_Quads[i];
// TODO: this is kind of ugly, the iterator should use a type that can have quad->m_Color assigned
// to it directly
const CVector4D quadColor(quad->m_Color.r, quad->m_Color.g, quad->m_Color.b, quad->m_Color.a);
*vertexPos++ = quad->m_Corners[0] + vOffset;
*vertexPos++ = quad->m_Corners[1] + vOffset;
*vertexPos++ = quad->m_Corners[2] + vOffset;
*vertexPos++ = quad->m_Corners[3] + vOffset;
(*vertexUV)[0] = 0;
(*vertexUV)[1] = 0;
++vertexUV;
(*vertexUV)[0] = 0;
(*vertexUV)[1] = 1;
++vertexUV;
(*vertexUV)[0] = 1;
(*vertexUV)[1] = 1;
++vertexUV;
(*vertexUV)[0] = 1;
(*vertexUV)[1] = 0;
++vertexUV;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
*vertexColor++ = quadColor;
indicesIdx += 6;
totalNumQuads++;
batchRenderData.m_NumRenderQuads++;
}
}
m->quadVertices.Upload();
// don't free the backing store! we'll overwrite it on the next frame to save a reallocation.
m->quadVertices.PrepareForRendering();
}
void OverlayRenderer::RenderOverlaysBeforeWater()
{
PROFILE3_GPU("overlays (before)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderOverlaysBeforeWater for GLES
#else
pglActiveTextureARB(GL_TEXTURE0);
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
// Ignore z so that we draw behind terrain (but don't disable GL_DEPTH_TEST
// since we still want to write to the z buffer)
glDepthFunc(GL_ALWAYS);
for (size_t i = 0; i < m->lines.size(); ++i)
{
SOverlayLine* line = m->lines[i];
if (line->m_Coords.empty())
continue;
ENSURE(line->m_Coords.size() % 3 == 0);
glColor4fv(line->m_Color.FloatArray());
glLineWidth((float)line->m_Thickness);
glInterleavedArrays(GL_V3F, sizeof(float)*3, &line->m_Coords[0]);
glDrawArrays(GL_LINE_STRIP, 0, (GLsizei)line->m_Coords.size()/3);
}
glDisableClientState(GL_VERTEX_ARRAY);
glLineWidth(1.f);
glDepthFunc(GL_LEQUAL);
glDisable(GL_BLEND);
#endif
}
void OverlayRenderer::RenderOverlaysAfterWater()
{
PROFILE3_GPU("overlays (after)");
RenderTexturedOverlayLines();
RenderQuadOverlays();
RenderSphereOverlays();
}
void OverlayRenderer::RenderTexturedOverlayLines()
{
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderTexturedOverlayLines for GLES
return;
#endif
if (m->texlines.empty())
return;
ogl_WarnIfError();
pglActiveTextureARB(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
const char* shaderName;
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
shaderName = "arb/overlayline";
else
shaderName = "fixed:overlayline";
CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture();
CShaderManager& shaderManager = g_Renderer.GetShaderManager();
CShaderProgramPtr shaderTexLineNormal(shaderManager.LoadProgram(shaderName, m->defsOverlayLineNormal));
CShaderProgramPtr shaderTexLineAlwaysVisible(shaderManager.LoadProgram(shaderName, m->defsOverlayLineAlwaysVisible));
// ----------------------------------------------------------------------------------------
if (shaderTexLineNormal)
{
shaderTexLineNormal->Bind();
shaderTexLineNormal->BindTexture(str_losTex, los.GetTexture());
shaderTexLineNormal->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// batch render only the non-always-visible overlay lines using the normal shader
RenderTexturedOverlayLines(shaderTexLineNormal, false);
shaderTexLineNormal->Unbind();
}
// ----------------------------------------------------------------------------------------
if (shaderTexLineAlwaysVisible)
{
shaderTexLineAlwaysVisible->Bind();
// TODO: losTex and losTransform are unused in the always visible shader; see if these can be safely omitted
shaderTexLineAlwaysVisible->BindTexture(str_losTex, los.GetTexture());
shaderTexLineAlwaysVisible->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// batch render only the always-visible overlay lines using the LoS-ignored shader
RenderTexturedOverlayLines(shaderTexLineAlwaysVisible, true);
shaderTexLineAlwaysVisible->Unbind();
}
// ----------------------------------------------------------------------------------------
// TODO: the shaders should probably be responsible for unbinding their textures
g_Renderer.BindTexture(1, 0);
g_Renderer.BindTexture(0, 0);
CVertexBuffer::Unbind();
glDepthMask(1);
glDisable(GL_BLEND);
}
void OverlayRenderer::RenderTexturedOverlayLines(CShaderProgramPtr shader, bool alwaysVisible)
{
for (size_t i = 0; i < m->texlines.size(); ++i)
{
SOverlayTexturedLine* line = m->texlines[i];
// render only those lines matching the requested alwaysVisible status
if (!line->m_RenderData || line->m_AlwaysVisible != alwaysVisible)
continue;
ENSURE(line->m_RenderData);
line->m_RenderData->Render(*line, shader);
}
}
void OverlayRenderer::RenderQuadOverlays()
{
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderQuadOverlays for GLES
return;
#endif
if (m->quadBatchMap.empty())
return;
ogl_WarnIfError();
pglActiveTextureARB(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
const char* shaderName;
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
shaderName = "arb/overlayline";
else
shaderName = "fixed:overlayline";
CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture();
CShaderManager& shaderManager = g_Renderer.GetShaderManager();
CShaderProgramPtr shader(shaderManager.LoadProgram(shaderName, m->defsQuadOverlay));
// ----------------------------------------------------------------------------------------
if (shader)
{
shader->Bind();
shader->BindTexture(str_losTex, los.GetTexture());
shader->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// Base offsets (in bytes) of the two backing stores relative to their owner VBO
u8* indexBase = m->quadIndices.Bind();
u8* vertexBase = m->quadVertices.Bind();
GLsizei indexStride = m->quadIndices.GetStride();
GLsizei vertexStride = m->quadVertices.GetStride();
for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it)
{
QuadBatchData& batchRenderData = it->second;
const size_t batchNumQuads = batchRenderData.m_NumRenderQuads;
// Careful; some drivers don't like drawing calls with 0 stuff to draw.
if (batchNumQuads == 0)
continue;
const QuadBatchKey& maskPair = it->first;
shader->BindTexture(str_baseTex, maskPair.m_Texture->GetHandle());
shader->BindTexture(str_maskTex, maskPair.m_TextureMask->GetHandle());
int streamflags = shader->GetStreamFlags();
if (streamflags & STREAM_POS)
shader->VertexPointer(m->quadAttributePos.elems, m->quadAttributePos.type, vertexStride, vertexBase + m->quadAttributePos.offset);
if (streamflags & STREAM_UV0)
shader->TexCoordPointer(GL_TEXTURE0, m->quadAttributeUV.elems, m->quadAttributeUV.type, vertexStride, vertexBase + m->quadAttributeUV.offset);
if (streamflags & STREAM_UV1)
shader->TexCoordPointer(GL_TEXTURE1, m->quadAttributeUV.elems, m->quadAttributeUV.type, vertexStride, vertexBase + m->quadAttributeUV.offset);
if (streamflags & STREAM_COLOR)
shader->ColorPointer(m->quadAttributeColor.elems, m->quadAttributeColor.type, vertexStride, vertexBase + m->quadAttributeColor.offset);
shader->AssertPointersBound();
glDrawElements(GL_TRIANGLES, (GLsizei)(batchNumQuads * 6), GL_UNSIGNED_SHORT, indexBase + indexStride * batchRenderData.m_IndicesBase);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += batchNumQuads*2;
}
shader->Unbind();
}
// ----------------------------------------------------------------------------------------
// TODO: the shader should probably be responsible for unbinding its textures
g_Renderer.BindTexture(1, 0);
g_Renderer.BindTexture(0, 0);
CVertexBuffer::Unbind();
glDepthMask(1);
glDisable(GL_BLEND);
}
void OverlayRenderer::RenderForegroundOverlays(const CCamera& viewCamera)
{
PROFILE3_GPU("overlays (fg)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderForegroundOverlays for GLES
#else
pglActiveTextureARB(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
CVector3D right = -viewCamera.m_Orientation.GetLeft();
CVector3D up = viewCamera.m_Orientation.GetUp();
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
CShaderProgramPtr shader;
CShaderTechniquePtr tech;
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
{
tech = g_Renderer.GetShaderManager().LoadEffect(str_foreground_overlay);
tech->BeginPass();
shader = tech->GetShader();
}
float uvs[8] = { 0,1, 1,1, 1,0, 0,0 };
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, sizeof(float)*2, &uvs[0]);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(float)*2, &uvs);
for (size_t i = 0; i < m->sprites.size(); ++i)
{
SOverlaySprite* sprite = m->sprites[i];
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
shader->BindTexture(str_baseTex, sprite->m_Texture);
else
sprite->m_Texture->Bind();
shader->Uniform(str_colorMul, sprite->m_Color);
CVector3D pos[4] = {
sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y0,
sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y0,
sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y1,
sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y1
};
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
shader->VertexPointer(3, GL_FLOAT, sizeof(float)*3, &pos[0].X);
else
glVertexPointer(3, GL_FLOAT, sizeof(float)*3, &pos[0].X);
glDrawArrays(GL_QUADS, 0, (GLsizei)4);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += 2;
}
if (g_RenderingOptions.GetRenderPath() == RenderPath::SHADER)
tech->EndPass();
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);
#endif
}
static void TessellateSphereFace(const CVector3D& a, u16 ai,
const CVector3D& b, u16 bi,
const CVector3D& c, u16 ci,
std::vector<float>& vertexes, std::vector<u16>& indexes, int level)
{
if (level == 0)
{
indexes.push_back(ai);
indexes.push_back(bi);
indexes.push_back(ci);
}
else
{
CVector3D d = (a + b).Normalized();
CVector3D e = (b + c).Normalized();
CVector3D f = (c + a).Normalized();
int di = vertexes.size() / 3; vertexes.push_back(d.X); vertexes.push_back(d.Y); vertexes.push_back(d.Z);
int ei = vertexes.size() / 3; vertexes.push_back(e.X); vertexes.push_back(e.Y); vertexes.push_back(e.Z);
int fi = vertexes.size() / 3; vertexes.push_back(f.X); vertexes.push_back(f.Y); vertexes.push_back(f.Z);
TessellateSphereFace(a,ai, d,di, f,fi, vertexes, indexes, level-1);
TessellateSphereFace(d,di, b,bi, e,ei, vertexes, indexes, level-1);
TessellateSphereFace(f,fi, e,ei, c,ci, vertexes, indexes, level-1);
TessellateSphereFace(d,di, e,ei, f,fi, vertexes, indexes, level-1);
}
}
static void TessellateSphere(std::vector<float>& vertexes, std::vector<u16>& indexes, int level)
{
/* Start with a tetrahedron, then tessellate */
float s = sqrtf(0.5f);
#define VERT(a,b,c) vertexes.push_back(a); vertexes.push_back(b); vertexes.push_back(c);
VERT(-s, 0, -s);
VERT( s, 0, -s);
VERT( s, 0, s);
VERT(-s, 0, s);
VERT( 0, -1, 0);
VERT( 0, 1, 0);
#define FACE(a,b,c) \
TessellateSphereFace( \
CVector3D(vertexes[a*3], vertexes[a*3+1], vertexes[a*3+2]), a, \
CVector3D(vertexes[b*3], vertexes[b*3+1], vertexes[b*3+2]), b, \
CVector3D(vertexes[c*3], vertexes[c*3+1], vertexes[c*3+2]), c, \
vertexes, indexes, level);
FACE(0,4,1);
FACE(1,4,2);
FACE(2,4,3);
FACE(3,4,0);
FACE(1,5,0);
FACE(2,5,1);
FACE(3,5,2);
FACE(0,5,3);
#undef FACE
#undef VERT
}
void OverlayRendererInternals::GenerateSphere()
{
if (sphereVertexes.empty())
TessellateSphere(sphereVertexes, sphereIndexes, 3);
}
void OverlayRenderer::RenderSphereOverlays()
{
PROFILE3_GPU("overlays (spheres)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderSphereOverlays for GLES
#else
if (g_RenderingOptions.GetRenderPath() != RenderPath::SHADER)
return;
if (m->spheres.empty())
return;
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
glEnableClientState(GL_VERTEX_ARRAY);
CShaderProgramPtr shader;
CShaderTechniquePtr tech;
tech = g_Renderer.GetShaderManager().LoadEffect(str_overlay_solid);
tech->BeginPass();
shader = tech->GetShader();
m->GenerateSphere();
shader->VertexPointer(3, GL_FLOAT, 0, &m->sphereVertexes[0]);
for (size_t i = 0; i < m->spheres.size(); ++i)
{
SOverlaySphere* sphere = m->spheres[i];
CMatrix3D transform;
transform.SetIdentity();
transform.Scale(sphere->m_Radius, sphere->m_Radius, sphere->m_Radius);
transform.Translate(sphere->m_Center);
shader->Uniform(str_transform, transform);
shader->Uniform(str_color, sphere->m_Color);
glDrawElements(GL_TRIANGLES, m->sphereIndexes.size(), GL_UNSIGNED_SHORT, &m->sphereIndexes[0]);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris = m->sphereIndexes.size()/3;
}
tech->EndPass();
glDisableClientState(GL_VERTEX_ARRAY);
glDepthMask(1);
glDisable(GL_BLEND);
#endif
}