1
0
forked from 0ad/0ad
0ad/source/simulation/Collision.cpp
Ykkrosh 35e91718c5 # Added tool for viewing models and animations outside the game.
Atlas: Added ActorViewer. Moved GL canvas into separate class for shared
use. Disabled message-handling callback while blocked on the game, and
stopped creating dialog boxes inside the game thread in order to avoid
deadlocks (hopefully). Support multiple Views (for independent sets of
camera/update/render code). Recalculate territory boundaries when
necessary. Changed default list of animations to match those currently
used by actors.
# Tidied up more code.
Moved some more #includes out of .h files, to minimise unnecessary
compilation.
MathUtil: Deleted unused/unuseful macros (M_PI (use PI instead), M_PI_2
(use PI/2), MAX3, ABS (use abs)).
ObjectManager: Removed some ScEd-specific things.
Unit: Moved creation out of UnitManager, so units can be created without
adding to the manager. Changed CStr8 to the more conventional CStr.
app_hooks: Removed warning for setting multiple times.
win: Restored SEH catcher.
GameSetup, GameView: Removed RenderNoCull, because it doesn't seem to do
what it says it does ("force renderer to load everything") since we're
loading-on-demand most stuff and it doesn't seem especially useful since
we'd prefer to minimise loading times (but feel free to correct me if
I'm wrong). (And because it crashes when things need to be initialised
in a different order, so it's easier to remove than to understand and
fix it.)
PatchRData, Renderer: Work sensibly when there's no game (hence no LOS
manager, water, etc).
LOSManager: Use entity position instead of actor position when possible.
TerritoryManager: Allow delayed recalculations (so Atlas can issue lots
of move+recalculate commands per frame).
Cinematic: Non-pointer wxTimer, so it doesn't leak and doesn't have to
be deleted manually.

This was SVN commit r4261.
2006-08-28 17:36:42 +00:00

296 lines
8.4 KiB
C++

#include "precompiled.h"
#include "Collision.h"
#include "Entity.h"
#include "EntityManager.h"
#include "EntityTemplate.h"
#include <float.h>
CBoundingObject* getContainingObject( const CVector2D& point )
{
std::vector<CEntity*> entities;
g_EntityManager.GetInRange( point.x, point.y, COLLISION_RANGE, entities );
std::vector<CEntity*>::iterator it;
for( it = entities.begin(); it != entities.end(); it++ )
{
if( !(*it)->m_bounds ) continue;
if( (*it)->m_bounds->contains( point ) )
{
CBoundingObject* bounds = (*it)->m_bounds;
return( bounds );
}
}
return( NULL );
}
CEntity* GetCollisionObject( float x, float y )
{
CVector2D point( x, y );
std::vector<CEntity*> entities;
g_EntityManager.GetInRange( x, y, COLLISION_RANGE, entities );
std::vector<CEntity*>::iterator it;
for( it = entities.begin(); it != entities.end(); it++ )
{
if( !(*it)->m_bounds ) continue;
if( (*it)->m_bounds->contains( point ) )
{
CEntity* e = (*it);
return( e );
}
}
return( NULL );
}
CBoundingObject* getCollisionObject( CBoundingObject* bounds, CPlayer* player, const CStrW* ignoreClass )
{
std::vector<CEntity*> entities;
g_EntityManager.GetInRange( bounds->m_pos.x, bounds->m_pos.y, COLLISION_RANGE, entities );
std::vector<CEntity*>::iterator it;
for( it = entities.begin(); it != entities.end(); it++ )
{
if( !(*it)->m_bounds ) continue;
if( (*it)->m_bounds == bounds ) continue;
/* If the unit is marked to ignore ally collisions, and the player parameter
is passed in and the same player as the unit, then ignore the (potential) collision */
if( player && (*it)->m_base->m_passThroughAllies && (*it)->m_player == player ) continue;
if( ignoreClass && (*it)->m_classes.IsMember( *ignoreClass ) ) continue;
if( bounds->intersects( (*it)->m_bounds ) )
{
CBoundingObject* obj = (*it)->m_bounds;
return( obj );
}
}
return( NULL );
}
CEntity* getCollisionEntity( CBoundingObject* bounds, CPlayer* player, const CStrW* ignoreClass )
{
std::vector<CEntity*> entities;
g_EntityManager.GetInRange( bounds->m_pos.x, bounds->m_pos.y, COLLISION_RANGE, entities );
std::vector<CEntity*>::iterator it;
for( it = entities.begin(); it != entities.end(); it++ )
{
if( !(*it)->m_bounds ) continue;
if( (*it)->m_bounds == bounds ) continue;
/* If the unit is marked to ignore ally collisions, and the player parameter
is passed in and the same player as the unit, then ignore the (potential) collision */
if( player && (*it)->m_base->m_passThroughAllies && (*it)->m_player == player ) continue;
if( ignoreClass && (*it)->m_classes.IsMember( *ignoreClass ) ) continue;
if( bounds->intersects( (*it)->m_bounds ) )
{
return (*it);
}
}
return( NULL );
}
HEntity getCollisionObject( CEntity* entity )
{
#ifndef NDEBUG
debug_assert( entity->m_bounds );
#else
if( !entity->m_bounds ) return HEntity();
#endif
std::vector<CEntity*> entities;
g_EntityManager.GetInRange( entity->m_position.X, entity->m_position.Z, COLLISION_RANGE, entities );
std::vector<CEntity*>::iterator it;
for( it = entities.begin(); it != entities.end(); it++ )
{
if( !(*it)->m_bounds ) continue;
if( (*it)->m_bounds == entity->m_bounds ) continue;
if( entity->m_base->m_passThroughAllies && (*it)->m_base->m_passThroughAllies
&& entity->m_player == (*it)->m_player ) continue;
if( entity->m_bounds->intersects( (*it)->m_bounds ) )
{
HEntity collisionObject = HEntity((*it)->me);
return( collisionObject );
}
}
return HEntity();
}
HEntity getCollisionObject( CEntity* entity, float x, float y )
{
float _x = entity->m_bounds->m_pos.x;
float _y = entity->m_bounds->m_pos.y;
entity->m_bounds->setPosition( x, y );
HEntity _e = getCollisionObject( entity );
entity->m_bounds->setPosition( _x, _y );
return( _e );
}
bool getRayIntersection( const CVector2D& source, const CVector2D& forward, const CVector2D& right, float length, float maxDistance, CBoundingObject* destinationCollisionObject, rayIntersectionResults* results )
{
std::vector<CEntity*> entities;
g_EntityManager.GetExtant( entities );
std::vector<CEntity*>::iterator it;
float closestApproach, dist;
CVector2D delta;
results->distance = length + maxDistance;
results->boundingObject = NULL;
for( it = entities.begin(); it != entities.end(); it++ )
{
if( !(*it)->m_bounds ) continue;
if( (*it)->m_bounds == destinationCollisionObject ) continue;
// TODO MT: Replace this with something based on whether the unit is actually moving.
if( (*it)->m_orderQueue.size() ) continue;
CBoundingObject* obj = (*it)->m_bounds;
delta = obj->m_pos - source;
closestApproach = delta.dot( right );
dist = delta.dot( forward );
float collisionRadius = maxDistance + obj->m_radius;
if( ( fabs( closestApproach ) < collisionRadius ) && ( dist > collisionRadius * 0.0f ) && ( dist < length - collisionRadius * 0.0f ) )
{
if( dist < results->distance )
{
results->boundingObject = obj;
results->closestApproach = closestApproach;
results->distance = dist;
results->Entity = (*it);
results->position = obj->m_pos;
}
}
}
if( results->boundingObject ) return( true );
return( false );
}
void GetProjectileIntersection( const CVector2D& position, const CVector2D& axis, float length, RayIntersects& results )
{
results.clear();
std::vector<CEntity*> entities;
g_EntityManager.GetExtant( entities );
float dist, closestApproach, l;
CVector2D delta;
std::vector<CEntity*>::iterator it;
for( it = entities.begin(); it != entities.end(); it++ )
{
CBoundingObject* obj = (*it)->m_bounds;
if( !obj ) continue;
delta = obj->m_pos - position;
closestApproach = delta.betadot( axis );
if( fabs( closestApproach ) > obj->m_radius )
continue; // Safe, doesn't get close enough.
dist = delta.dot( axis );
// I just want to see if this will work before I simplify the maths
l = sqrt( obj->m_radius * obj->m_radius - closestApproach * closestApproach );
if( dist > 0 )
{
// Forward...
if( ( dist - length ) > l )
continue; // OK, won't reach it.
}
else
{
// Backward...
if( -dist > l )
continue; // OK, started far enough away
}
if( obj->m_type == CBoundingObject::BOUND_OABB )
{
// Run a more accurate test against the box
CBoundingBox* box = (CBoundingBox*)obj;
const float EPSILON = 0.0001f;
float first = FLT_MAX, last = -FLT_MAX;
CVector2D delta2;
// Test against those sides of the box parallel with it's u vector.
float t = box->m_u.y * axis.x - axis.y * box->m_u.x;
float abs_t = fabs( t );
if( abs_t >= EPSILON )
{
// If not parallel,
delta2 = delta - box->m_v * box->m_w;
if( fabs( axis.y * delta2.x - axis.x * delta2.y ) < box->m_d * abs_t )
{
// Possible intersection with one side
float pos = ( box->m_u.y * delta2.x - box->m_u.x * delta2.y ) / t;
if( pos < first ) first = pos;
if( pos > last ) last = pos;
}
delta2 = delta + box->m_v * box->m_w;
if( fabs( axis.y * delta2.x - axis.x * delta2.y ) < box->m_d * abs_t )
{
// Possible intersection with one side
float pos = ( box->m_u.y * delta2.x - box->m_u.x * delta2.y ) / t;
if( pos < first ) first = pos;
if( pos > last ) last = pos;
}
}
// Next test against those sides of the box parallel with it's v vector.
t = box->m_v.y * axis.x - axis.y * box->m_v.x;
abs_t = fabs( t );
if( abs_t >= EPSILON )
{
// If not parallel,
delta2 = delta - box->m_u * box->m_d;
if( fabs( axis.y * delta2.x - axis.x * delta2.y ) < box->m_w * abs_t )
{
// Possible intersection with one side
float pos = ( box->m_v.y * delta2.x - box->m_v.x * delta2.y ) / t;
if( pos < first ) first = pos;
if( pos > last ) last = pos;
}
delta2 = delta + box->m_u * box->m_d;
if( fabs( axis.y * delta2.x - axis.x * delta2.y ) < box->m_w * abs_t )
{
// Possible intersection with one side
float pos = ( box->m_v.y * delta2.x - box->m_v.x * delta2.y ) / t;
if( pos < first ) first = pos;
if( pos > last ) last = pos;
}
}
// Then work out if we actually hit it within the given range.
if( last < 0.0f )
continue; // No, we started far enough 'after' there.
if( first > length )
continue; // No, we haven't yet moved far enough to hit it.
}
results.push_back( *it );
}
}
static RayIntersects SharedResults;
RayIntersects& GetProjectileIntersection( const CVector2D& position, const CVector2D& axis, float length )
{
GetProjectileIntersection( position, axis, length, SharedResults );
return( SharedResults );
}