1
0
forked from 0ad/0ad
0ad/source/lib/allocators/headerless.cpp
janwas c0ed950657 had to remove uint and ulong from lib/types.h due to conflict with other library.
this snowballed into a massive search+destroy of the hodgepodge of
mostly equivalent types we had in use (int, uint, unsigned, unsigned
int, i32, u32, ulong, uintN).

it is more efficient to use 64-bit types in 64-bit mode, so the
preferred default is size_t (for anything remotely resembling a size or
index). tile coordinates are ssize_t to allow more efficient conversion
to/from floating point. flags are int because we almost never need more
than 15 distinct bits, bit test/set is not slower and int is fastest to
type. finally, some data that is pretty much directly passed to OpenGL
is now typed accordingly.

after several hours, the code now requires fewer casts and less
guesswork.

other changes:
- unit and player IDs now have an "invalid id" constant in the
respective class to avoid casting and -1
- fix some endian/64-bit bugs in the map (un)packing. added a
convenience function to write/read a size_t.
- ia32: change CPUID interface to allow passing in ecx (required for
cache topology detection, which I need at work). remove some unneeded
functions from asm, replace with intrinsics where possible.

This was SVN commit r5942.
2008-05-11 18:48:32 +00:00

748 lines
18 KiB
C++

/**
* =========================================================================
* File : headerless.cpp
* Project : 0 A.D.
* Description : (header-.less) pool-based heap allocator
* =========================================================================
*/
// license: GPL; see lib/license.txt
#include "precompiled.h"
#include "headerless.h"
#include "mem_util.h"
#include "pool.h"
#include "lib/bits.h"
static const size_t minAlignment = 16;
static const bool performSanityChecks = true;
// shared by the Impl::Allocate and FreedBlock::Validate
static bool IsValidSize(size_t size);
//-----------------------------------------------------------------------------
// this combines the boundary tags and link fields into one structure,
// which is safer than direct pointer arithmetic.
//
// it is written to freed memory, which is fine because IsValidSize ensures
// the allocations are large enough.
class FreedBlock
{
friend class RangeList; // manipulates link fields directly
public:
// (required for RangeList::m_sentinel)
FreedBlock()
{
}
FreedBlock(u32 id, size_t size)
: m_magic(s_magic), m_size(size), m_id(id)
{
}
~FreedBlock()
{
// clear all fields to prevent accidental reuse
prev = next = 0;
m_id = 0;
m_size = ~(size_t)0u;
m_magic = 0;
}
size_t Size() const
{
return m_size;
}
/**
* @return whether this appears to be a FreedBlock instance with the
* desired ID. for additional safety, also call Validate().
**/
bool IsFreedBlock(u32 id) const
{
if(m_id != id)
return false;
if(m_magic != s_magic)
return false;
return true;
}
/**
* warn if any invariant doesn't hold.
**/
void Validate(u32 id) const
{
if(!performSanityChecks) return;
// note: RangeList::Validate implicitly checks the prev and next
// fields by iterating over the list.
// note: we can't check for prev != next because we're called for
// footers as well, and they don't have valid pointers.
debug_assert(IsValidSize(m_size));
debug_assert(IsFreedBlock(id));
}
private:
// note: the magic and ID fields are stored at both ends of this
// class to increase the chance of detecting memory corruption.
static const uintptr_t s_magic = 0xFF55AA00;
uintptr_t m_magic;
FreedBlock* prev;
FreedBlock* next;
// size [bytes] of the entire memory block, including header and footer
size_t m_size;
// this differentiates between headers and footers.
u32 m_id;
};
static bool IsValidSize(size_t size)
{
// note: we disallow the questionable practice of zero-byte allocations
// because they may be indicative of bugs.
if(size < sizeof(FreedBlock))
return false;
if(size % minAlignment)
return false;
return true;
}
//-----------------------------------------------------------------------------
// freelists
//-----------------------------------------------------------------------------
// policy: address-ordered good fit
// mechanism: segregated range lists of power-of-two size classes
struct AddressOrder
{
static bool ShouldInsertBefore(FreedBlock* current, FreedBlock* successor)
{
return current < successor;
}
};
// "range list" is a freelist of similarly-sized blocks.
class RangeList
{
public:
RangeList()
{
Reset();
}
void Reset()
{
m_sentinel.prev = &m_sentinel;
m_sentinel.next = &m_sentinel;
m_freeBlocks = 0;
m_freeBytes = 0;
}
template<class InsertPolicy>
void Insert(FreedBlock* freedBlock)
{
// find freedBlock before which to insert
FreedBlock* successor;
for(successor = m_sentinel.next; successor != &m_sentinel; successor = successor->next)
{
if(InsertPolicy::ShouldInsertBefore(freedBlock, successor))
break;
}
freedBlock->prev = successor->prev;
freedBlock->next = successor;
successor->prev->next = freedBlock;
successor->prev = freedBlock;
m_freeBlocks++;
m_freeBytes += freedBlock->Size();
}
/**
* @return the first freed block of size >= minSize or 0 if none exists.
**/
FreedBlock* Find(size_t minSize)
{
for(FreedBlock* freedBlock = m_sentinel.next; freedBlock != &m_sentinel; freedBlock = freedBlock->next)
{
if(freedBlock->Size() >= minSize)
return freedBlock;
}
// none found, so average block size is less than the desired size
debug_assert(m_freeBytes/m_freeBlocks < minSize);
return 0;
}
void Remove(FreedBlock* freedBlock)
{
freedBlock->next->prev = freedBlock->prev;
freedBlock->prev->next = freedBlock->next;
debug_assert(m_freeBlocks != 0);
debug_assert(m_freeBytes >= freedBlock->Size());
m_freeBlocks--;
m_freeBytes -= freedBlock->Size();
}
void Validate(u32 id) const
{
if(!performSanityChecks) return;
size_t freeBlocks = 0, freeBytes = 0;
for(FreedBlock* freedBlock = m_sentinel.next; freedBlock != &m_sentinel; freedBlock = freedBlock->next)
{
freedBlock->Validate(id);
freeBlocks++;
freeBytes += freedBlock->Size();
}
for(FreedBlock* freedBlock = m_sentinel.prev; freedBlock != &m_sentinel; freedBlock = freedBlock->prev)
{
freedBlock->Validate(id);
freeBlocks++;
freeBytes += freedBlock->Size();
}
// our idea of the number and size of free blocks is correct
debug_assert(freeBlocks == m_freeBlocks*2 && freeBytes == m_freeBytes*2);
// if empty, state must be as established by Reset
debug_assert(!IsEmpty() || (m_sentinel.next == &m_sentinel && m_sentinel.prev == &m_sentinel));
}
bool IsEmpty() const
{
return (m_freeBlocks == 0);
}
size_t FreeBlocks() const
{
return m_freeBlocks;
}
size_t FreeBytes() const
{
return m_freeBytes;
}
private:
// a sentinel simplifies Insert and Remove. we store it here instead of
// in a separate array to improve locality (it is actually accessed).
mutable FreedBlock m_sentinel;
size_t m_freeBlocks;
size_t m_freeBytes;
};
//-----------------------------------------------------------------------------
class SegregatedRangeLists
{
public:
SegregatedRangeLists()
{
Reset();
}
void Reset()
{
m_bitmap = 0;
for(size_t i = 0; i < numRangeLists; i++)
m_rangeLists[i].Reset();
}
void Insert(FreedBlock* freedBlock)
{
const size_t sizeClass = SizeClass(freedBlock->Size());
m_rangeLists[sizeClass].Insert<AddressOrder>(freedBlock);
m_bitmap |= BIT(sizeClass);
}
/**
* @return the first freed block of size >= minSize or 0 if none exists.
**/
FreedBlock* Find(size_t minSize)
{
// iterate over all large enough, non-empty size classes
// (zero overhead for empty size classes)
const size_t minSizeClass = SizeClass(minSize);
size_t sizeClassBits = m_bitmap & (~0u << minSizeClass);
while(sizeClassBits)
{
const size_t size = ValueOfLeastSignificantOneBit(sizeClassBits);
sizeClassBits &= ~size; // remove from sizeClassBits
const size_t sizeClass = SizeClass(size);
FreedBlock* freedBlock = m_rangeLists[sizeClass].Find(minSize);
if(freedBlock)
return freedBlock;
}
// apparently all classes above minSizeClass are empty,
// or the above would have succeeded.
debug_assert(m_bitmap < BIT(minSizeClass+1));
return 0;
}
void Remove(FreedBlock* freedBlock)
{
const size_t sizeClass = SizeClass(freedBlock->Size());
m_rangeLists[sizeClass].Remove(freedBlock);
// (masking with !IsEmpty() << sizeClass would probably be faster)
if(m_rangeLists[sizeClass].IsEmpty())
m_bitmap &= ~BIT(sizeClass);
}
void Validate(u32 id) const
{
for(size_t i = 0; i < numRangeLists; i++)
{
m_rangeLists[i].Validate(id);
// both bitmap and list must agree on whether they are empty
debug_assert(((m_bitmap & BIT(i)) == 0) == m_rangeLists[i].IsEmpty());
}
}
size_t FreeBlocks() const
{
size_t freeBlocks = 0;
for(size_t i = 0; i < numRangeLists; i++)
freeBlocks += m_rangeLists[i].FreeBlocks();
return freeBlocks;
}
size_t FreeBytes() const
{
size_t freeBytes = 0;
for(size_t i = 0; i < numRangeLists; i++)
freeBytes += m_rangeLists[i].FreeBytes();
return freeBytes;
}
private:
/**
* @return "size class" of a given size.
* class i > 0 contains blocks of size (2**(i-1), 2**i].
**/
static size_t SizeClass(size_t size)
{
return ceil_log2((size_t)size);
}
static uintptr_t ValueOfLeastSignificantOneBit(uintptr_t x)
{
return (x & -(intptr_t)x);
}
// segregated, i.e. one list per size class.
static const size_t numRangeLists = sizeof(uintptr_t)*CHAR_BIT;
RangeList m_rangeLists[numRangeLists];
// bit i set <==> size class i's freelist is not empty.
// this allows finding a non-empty list in O(1).
u32 m_bitmap;
};
//-----------------------------------------------------------------------------
// coalescing
//-----------------------------------------------------------------------------
// policy: immediately coalesce
// mechanism: boundary tags
// note: the id and magic values are all that differentiates tags from
// user data. this isn't 100% reliable, but as with headers, we don't want
// to insert extra boundary tags into the allocated memory.
// note: footers are also represented as FreedBlock. this is easier to
// implement but a bit inefficient since we don't need all its fields.
class BoundaryTagManager
{
public:
BoundaryTagManager()
: m_freeBlocks(0), m_freeBytes(0)
{
}
FreedBlock* WriteTags(u8* p, size_t size)
{
FreedBlock* freedBlock = new(p) FreedBlock(s_headerId, size);
(void)new(Footer(freedBlock)) FreedBlock(s_footerId, size);
m_freeBlocks++;
m_freeBytes += size;
Validate(freedBlock);
return freedBlock;
}
void RemoveTags(FreedBlock* freedBlock)
{
Validate(freedBlock);
debug_assert(m_freeBlocks != 0);
debug_assert(m_freeBytes >= freedBlock->Size());
m_freeBlocks--;
m_freeBytes -= freedBlock->Size();
FreedBlock* footer = Footer(freedBlock);
freedBlock->~FreedBlock();
footer->~FreedBlock();
}
FreedBlock* PrecedingBlock(u8* p, u8* beginningOfPool) const
{
if(p == beginningOfPool) // avoid accessing invalid memory
return 0;
FreedBlock* precedingBlock;
{
FreedBlock* const footer = (FreedBlock*)(p - sizeof(FreedBlock));
if(!footer->IsFreedBlock(s_footerId))
return 0;
footer->Validate(s_footerId);
precedingBlock = (FreedBlock*)(p - footer->Size());
}
Validate(precedingBlock);
return precedingBlock;
}
FreedBlock* FollowingBlock(u8* p, size_t size, u8* endOfPool) const
{
if(p+size == endOfPool) // avoid accessing invalid memory
return 0;
FreedBlock* const followingBlock = (FreedBlock*)(p + size);
if(!followingBlock->IsFreedBlock(s_headerId))
return 0;
Validate(followingBlock);
return followingBlock;
}
size_t FreeBlocks() const
{
return m_freeBlocks;
}
size_t FreeBytes() const
{
return m_freeBytes;
}
// (generated via GUID)
static const u32 s_headerId = 0x111E8E6Fu;
static const u32 s_footerId = 0x4D745342u;
private:
void Validate(FreedBlock* freedBlock) const
{
if(!performSanityChecks) return;
// the existence of freedBlock means our bookkeeping better have
// records of at least that much memory.
debug_assert(m_freeBlocks != 0);
debug_assert(m_freeBytes >= freedBlock->Size());
freedBlock->Validate(s_headerId);
Footer(freedBlock)->Validate(s_footerId);
}
static FreedBlock* Footer(FreedBlock* freedBlock)
{
u8* const p = (u8*)freedBlock;
return (FreedBlock*)(p + freedBlock->Size() - sizeof(FreedBlock));
}
size_t m_freeBlocks;
size_t m_freeBytes;
};
//-----------------------------------------------------------------------------
// stats
//-----------------------------------------------------------------------------
class Stats
{
public:
void OnReset()
{
if(!performSanityChecks) return;
m_totalAllocatedBlocks = m_totalAllocatedBytes = 0;
m_totalDeallocatedBlocks = m_totalDeallocatedBytes = 0;
m_currentExtantBlocks = m_currentExtantBytes = 0;
m_currentFreeBlocks = m_currentFreeBytes = 0;
}
void OnAllocate(size_t size)
{
if(!performSanityChecks) return;
m_totalAllocatedBlocks++;
m_totalAllocatedBytes += size;
m_currentExtantBlocks++;
m_currentExtantBytes += size;
}
void OnDeallocate(size_t size)
{
if(!performSanityChecks) return;
m_totalDeallocatedBlocks++;
m_totalDeallocatedBytes += size;
debug_assert(m_totalDeallocatedBlocks <= m_totalAllocatedBlocks);
debug_assert(m_totalDeallocatedBytes <= m_totalDeallocatedBytes);
debug_assert(m_currentExtantBlocks != 0);
debug_assert(m_currentExtantBytes >= size);
m_currentExtantBlocks--;
m_currentExtantBytes -= size;
}
void OnAddToFreelist(size_t size)
{
m_currentFreeBlocks++;
m_currentFreeBytes += size;
}
void OnRemoveFromFreelist(size_t size)
{
if(!performSanityChecks) return;
debug_assert(m_currentFreeBlocks != 0);
debug_assert(m_currentFreeBytes >= size);
m_currentFreeBlocks--;
m_currentFreeBytes -= size;
}
void Validate() const
{
if(!performSanityChecks) return;
debug_assert(m_totalDeallocatedBlocks <= m_totalAllocatedBlocks);
debug_assert(m_totalDeallocatedBytes <= m_totalAllocatedBytes);
debug_assert(m_currentExtantBlocks == m_totalAllocatedBlocks-m_totalDeallocatedBlocks);
debug_assert(m_currentExtantBytes == m_totalAllocatedBytes-m_totalDeallocatedBytes);
}
size_t FreeBlocks() const
{
return m_currentFreeBlocks;
}
size_t FreeBytes() const
{
return m_currentFreeBytes;
}
private:
size_t m_totalAllocatedBlocks, m_totalAllocatedBytes;
size_t m_totalDeallocatedBlocks, m_totalDeallocatedBytes;
size_t m_currentExtantBlocks, m_currentExtantBytes;
size_t m_currentFreeBlocks, m_currentFreeBytes;
};
//-----------------------------------------------------------------------------
// HeaderlessAllocator::Impl
//-----------------------------------------------------------------------------
static void AssertEqual(size_t x1, size_t x2, size_t x3)
{
debug_assert(x1 == x2 && x2 == x3);
}
class HeaderlessAllocator::Impl
{
public:
Impl(size_t poolSize)
{
(void)pool_create(&m_pool, poolSize, 0);
Reset();
}
~Impl()
{
Validate();
(void)pool_destroy(&m_pool);
}
void Reset()
{
pool_free_all(&m_pool);
m_segregatedRangeLists.Reset();
m_stats.OnReset();
Validate();
}
void* Allocate(size_t size) throw()
{
debug_assert(IsValidSize(size));
Validate();
void* p = TakeAndSplitFreeBlock(size);
if(!p)
{
p = pool_alloc(&m_pool, size);
if(!p) // both failed; don't throw bad_alloc because
return 0; // this often happens with the file cache.
}
// (NB: we must not update the statistics if allocation failed)
m_stats.OnAllocate(size);
Validate();
return p;
}
void Deallocate(u8* p, size_t size)
{
debug_assert((uintptr_t)p % minAlignment == 0);
debug_assert(IsValidSize(size));
debug_assert(pool_contains(&m_pool, p));
debug_assert(pool_contains(&m_pool, p+size-1));
Validate();
m_stats.OnDeallocate(size);
Coalesce(p, size);
AddToFreelist(p, size);
Validate();
}
void Validate() const
{
if(!performSanityChecks) return;
m_segregatedRangeLists.Validate(BoundaryTagManager::s_headerId);
m_stats.Validate();
AssertEqual(m_stats.FreeBlocks(), m_segregatedRangeLists.FreeBlocks(), m_boundaryTagManager.FreeBlocks());
AssertEqual(m_stats.FreeBytes(), m_segregatedRangeLists.FreeBytes(), m_boundaryTagManager.FreeBytes());
}
private:
void AddToFreelist(u8* p, size_t size)
{
FreedBlock* freedBlock = m_boundaryTagManager.WriteTags(p, size);
m_segregatedRangeLists.Insert(freedBlock);
m_stats.OnAddToFreelist(size);
}
void RemoveFromFreelist(FreedBlock* freedBlock)
{
m_stats.OnRemoveFromFreelist(freedBlock->Size());
m_segregatedRangeLists.Remove(freedBlock);
m_boundaryTagManager.RemoveTags(freedBlock);
}
/**
* expand a block by coalescing it with its free neighbor(s).
**/
void Coalesce(u8*& p, size_t& size)
{
{
FreedBlock* precedingBlock = m_boundaryTagManager.PrecedingBlock(p, m_pool.da.base);
if(precedingBlock)
{
p -= precedingBlock->Size();
size += precedingBlock->Size();
RemoveFromFreelist(precedingBlock);
}
}
{
FreedBlock* followingBlock = m_boundaryTagManager.FollowingBlock(p, size, m_pool.da.base+m_pool.da.pos);
if(followingBlock)
{
size += followingBlock->Size();
RemoveFromFreelist(followingBlock);
}
}
}
void* TakeAndSplitFreeBlock(size_t size)
{
u8* p;
size_t leftoverSize = 0;
{
FreedBlock* freedBlock = m_segregatedRangeLists.Find(size);
if(!freedBlock)
return 0;
p = (u8*)freedBlock;
leftoverSize = freedBlock->Size() - size;
RemoveFromFreelist(freedBlock);
}
if(IsValidSize(leftoverSize))
AddToFreelist(p+size, leftoverSize);
return p;
}
Pool m_pool;
SegregatedRangeLists m_segregatedRangeLists;
BoundaryTagManager m_boundaryTagManager;
Stats m_stats;
};
//-----------------------------------------------------------------------------
HeaderlessAllocator::HeaderlessAllocator(size_t poolSize)
: impl(new Impl(poolSize))
{
}
void HeaderlessAllocator::Reset()
{
return impl->Reset();
}
void* HeaderlessAllocator::Allocate(size_t size) throw()
{
return impl->Allocate(size);
}
void HeaderlessAllocator::Deallocate(void* p, size_t size)
{
return impl->Deallocate((u8*)p, size);
}
void HeaderlessAllocator::Validate() const
{
return impl->Validate();
}