1
0
forked from 0ad/0ad
0ad/source/renderer/TexturedLineRData.cpp
bb 157c6af18e Make the space in 0 A.D. non-breaking throughout the codebase.
Avoid cases of filenames
Update years in terms and other legal(ish) documents
Don't update years in license headers, since change is not meaningful

Will add linter rule in seperate commit

Happy recompiling everyone!

Original Patch By: Nescio
Comment By: Gallaecio
Differential Revision: D2620
This was SVN commit r27786.
2023-07-27 20:54:46 +00:00

475 lines
19 KiB
C++

/* Copyright (C) 2023 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "TexturedLineRData.h"
#include "graphics/ShaderProgram.h"
#include "graphics/Terrain.h"
#include "maths/Frustum.h"
#include "maths/MathUtil.h"
#include "maths/Quaternion.h"
#include "ps/CStrInternStatic.h"
#include "renderer/OverlayRenderer.h"
#include "renderer/Renderer.h"
#include "simulation2/Simulation2.h"
#include "simulation2/system/SimContext.h"
#include "simulation2/components/ICmpWaterManager.h"
/* Note: this implementation uses g_VBMan directly rather than access it through the nicer VertexArray interface,
* because it allows you to work with variable amounts of vertices and indices more easily. New code should prefer
* to use VertexArray where possible, though. */
// static
Renderer::Backend::IVertexInputLayout* CTexturedLineRData::GetVertexInputLayout()
{
const uint32_t stride = sizeof(CTexturedLineRData::SVertex);
const std::array<Renderer::Backend::SVertexAttributeFormat, 3> attributes{{
{Renderer::Backend::VertexAttributeStream::POSITION,
Renderer::Backend::Format::R32G32B32_SFLOAT,
offsetof(CTexturedLineRData::SVertex, m_Position), stride,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0},
{Renderer::Backend::VertexAttributeStream::UV0,
Renderer::Backend::Format::R32G32_SFLOAT,
offsetof(CTexturedLineRData::SVertex, m_UV), stride,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0},
{Renderer::Backend::VertexAttributeStream::UV1,
Renderer::Backend::Format::R32G32_SFLOAT,
offsetof(CTexturedLineRData::SVertex, m_UV), stride,
Renderer::Backend::VertexAttributeRate::PER_VERTEX, 0}
}};
return g_Renderer.GetVertexInputLayout(attributes);
}
void CTexturedLineRData::Render(
Renderer::Backend::IDeviceCommandContext* deviceCommandContext,
Renderer::Backend::IVertexInputLayout* vertexInputLayout,
const SOverlayTexturedLine& line, Renderer::Backend::IShaderProgram* shader)
{
if (!m_VB || !m_VBIndices)
return; // might have failed to allocate
// -- render main line quad strip ----------------------
line.m_TextureBase->UploadBackendTextureIfNeeded(deviceCommandContext);
line.m_TextureMask->UploadBackendTextureIfNeeded(deviceCommandContext);
ENSURE(!m_VB->m_Owner->GetBuffer()->IsDynamic());
ENSURE(!m_VBIndices->m_Owner->GetBuffer()->IsDynamic());
deviceCommandContext->SetTexture(
shader->GetBindingSlot(str_baseTex), line.m_TextureBase->GetBackendTexture());
deviceCommandContext->SetTexture(
shader->GetBindingSlot(str_maskTex), line.m_TextureMask->GetBackendTexture());
deviceCommandContext->SetUniform(
shader->GetBindingSlot(str_objectColor), line.m_Color.AsFloatArray());
deviceCommandContext->SetVertexInputLayout(vertexInputLayout);
deviceCommandContext->SetVertexBuffer(0, m_VB->m_Owner->GetBuffer(), 0);
deviceCommandContext->SetIndexBuffer(m_VBIndices->m_Owner->GetBuffer());
deviceCommandContext->DrawIndexed(m_VBIndices->m_Index, m_VBIndices->m_Count, 0);
g_Renderer.GetStats().m_DrawCalls++;
g_Renderer.GetStats().m_OverlayTris += m_VBIndices->m_Count/3;
}
void CTexturedLineRData::Update(const SOverlayTexturedLine& line)
{
m_VBIndices.Reset();
m_VB.Reset();
if (!line.m_SimContext)
{
debug_warn(L"[TexturedLineRData] No SimContext set for textured overlay line, cannot render (no terrain data)");
return;
}
float v = 0.f;
std::vector<SVertex> vertices;
std::vector<u16> indices;
const size_t n = line.m_Coords.size(); // number of line points
bool closed = line.m_Closed;
ENSURE(n >= 2); // minimum needed to avoid errors (also minimum value to make sense, can't draw a line between 1 point)
// In each iteration, p1 is the position of vertex i, p0 is i-1, p2 is i+1.
// To avoid slightly expensive terrain computations we cycle these around and
// recompute p2 at the end of each iteration.
CVector3D p0;
CVector3D p1(line.m_Coords[0].X, 0, line.m_Coords[0].Y);
CVector3D p2(line.m_Coords[1].X, 0, line.m_Coords[1].Y);
if (closed)
// grab the ending point so as to close the loop
p0 = CVector3D(line.m_Coords[n - 1].X, 0, line.m_Coords[n - 1].Y);
else
// we don't want to loop around and use the direction towards the other end of the line, so create an artificial p0 that
// extends the p2 -> p1 direction, and use that point instead
p0 = p1 + (p1 - p2);
bool p1floating = false;
bool p2floating = false;
// Compute terrain heights, clamped to the water height (and remember whether
// each point was floating on water, for normal computation later)
// TODO: if we ever support more than one water level per map, recompute this per point
CmpPtr<ICmpWaterManager> cmpWaterManager(*line.m_SimContext, SYSTEM_ENTITY);
float w = cmpWaterManager ? cmpWaterManager->GetExactWaterLevel(p0.X, p0.Z) : 0.f;
const CTerrain& terrain = line.m_SimContext->GetTerrain();
p0.Y = terrain.GetExactGroundLevel(p0.X, p0.Z);
if (p0.Y < w)
p0.Y = w;
p1.Y = terrain.GetExactGroundLevel(p1.X, p1.Z);
if (p1.Y < w)
{
p1.Y = w;
p1floating = true;
}
p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z);
if (p2.Y < w)
{
p2.Y = w;
p2floating = true;
}
for (size_t i = 0; i < n; ++i)
{
// For vertex i, compute bisector of lines (i-1)..(i) and (i)..(i+1)
// perpendicular to terrain normal
// Normal is vertical if on water, else computed from terrain
CVector3D norm;
if (p1floating)
norm = CVector3D(0, 1, 0);
else
norm = terrain.CalcExactNormal(p1.X, p1.Z);
CVector3D b = ((p1 - p0).Normalized() + (p2 - p1).Normalized()).Cross(norm);
// Adjust bisector length to match the line thickness, along the line's width
float l = b.Dot((p2 - p1).Normalized().Cross(norm));
if (fabs(l) > 0.000001f) // avoid unlikely divide-by-zero
b *= line.m_Thickness / l;
// Push vertices and indices for each quad in GL_TRIANGLES order. The two triangles of each quad are indexed using
// the winding orders (BR, BL, TR) and (TR, BL, TL) (where BR is bottom-right of this iteration's quad, TR top-right etc).
SVertex vertex1(p1 + b + norm * OverlayRenderer::OVERLAY_VOFFSET, CVector2D(0.f, v));
SVertex vertex2(p1 - b + norm * OverlayRenderer::OVERLAY_VOFFSET, CVector2D(1.f, v));
vertices.push_back(vertex1);
vertices.push_back(vertex2);
u16 vertexCount = static_cast<u16>(vertices.size());
u16 index1 = vertexCount - 2; // index of vertex1 in this iteration (TR of this quad)
u16 index2 = vertexCount - 1; // index of the vertex2 in this iteration (TL of this quad)
if (i == 0)
{
// initial two vertices to continue building triangles from (n must be >= 2 for this to work)
indices.push_back(index1);
indices.push_back(index2);
}
else
{
u16 index1Prev = vertexCount - 4; // index of the vertex1 in the previous iteration (BR of this quad)
u16 index2Prev = vertexCount - 3; // index of the vertex2 in the previous iteration (BL of this quad)
ENSURE(index1Prev < vertexCount);
ENSURE(index2Prev < vertexCount);
// Add two corner points from last iteration and join with one of our own corners to create triangle 1
// (don't need to do this if i == 1 because i == 0 are the first two ones, they don't need to be copied)
if (i > 1)
{
indices.push_back(index1Prev);
indices.push_back(index2Prev);
}
indices.push_back(index1); // complete triangle 1
// create triangle 2, specifying the adjacent side's vertices in the opposite order from triangle 1
indices.push_back(index1);
indices.push_back(index2Prev);
indices.push_back(index2);
}
// alternate V coordinate for debugging
v = 1 - v;
// cycle the p's and compute the new p2
p0 = p1;
p1 = p2;
p1floating = p2floating;
// if in closed mode, wrap around the coordinate array for p2 -- otherwise, extend linearly
if (!closed && i == n-2)
// next iteration is the last point of the line, so create an artificial p2 that extends the p0 -> p1 direction
p2 = p1 + (p1 - p0);
else
p2 = CVector3D(line.m_Coords[(i + 2) % n].X, 0, line.m_Coords[(i + 2) % n].Y);
p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z);
if (p2.Y < w)
{
p2.Y = w;
p2floating = true;
}
else
p2floating = false;
}
if (closed)
{
// close the path
if (n % 2 == 0)
{
u16 vertexCount = static_cast<u16>(vertices.size());
indices.push_back(vertexCount - 2);
indices.push_back(vertexCount - 1);
indices.push_back(0);
indices.push_back(0);
indices.push_back(vertexCount - 1);
indices.push_back(1);
}
else
{
// add two vertices to have the good UVs for the last quad
SVertex vertex1(vertices[0].m_Position, CVector2D(0.f, 1.f));
SVertex vertex2(vertices[1].m_Position, CVector2D(1.f, 1.f));
vertices.push_back(vertex1);
vertices.push_back(vertex2);
u16 vertexCount = static_cast<u16>(vertices.size());
indices.push_back(vertexCount - 4);
indices.push_back(vertexCount - 3);
indices.push_back(vertexCount - 2);
indices.push_back(vertexCount - 2);
indices.push_back(vertexCount - 3);
indices.push_back(vertexCount - 1);
}
}
else
{
// Create start and end caps. On either end, this is done by taking the centroid between the last and second-to-last pair of
// vertices that was generated along the path (i.e. the vertex1's and vertex2's from above), taking a directional vector
// between them, and drawing the line cap in the plane given by the two butt-end corner points plus said vector.
std::vector<u16> capIndices;
std::vector<SVertex> capVertices;
// create end cap
CreateLineCap(
line,
// the order of these vertices is important here, swapping them produces caps at the wrong side
vertices[vertices.size()-2].m_Position, // top-right vertex of last quad
vertices[vertices.size()-1].m_Position, // top-left vertex of last quad
// directional vector between centroids of last vertex pair and second-to-last vertex pair
(Centroid(vertices[vertices.size()-2], vertices[vertices.size()-1]) - Centroid(vertices[vertices.size()-4], vertices[vertices.size()-3])).Normalized(),
line.m_EndCapType,
capVertices,
capIndices
);
for (unsigned i = 0; i < capIndices.size(); i++)
capIndices[i] += static_cast<u16>(vertices.size());
vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
indices.insert(indices.end(), capIndices.begin(), capIndices.end());
capIndices.clear();
capVertices.clear();
// create start cap
CreateLineCap(
line,
// the order of these vertices is important here, swapping them produces caps at the wrong side
vertices[1].m_Position,
vertices[0].m_Position,
// directional vector between centroids of first vertex pair and second vertex pair
(Centroid(vertices[1], vertices[0]) - Centroid(vertices[3], vertices[2])).Normalized(),
line.m_StartCapType,
capVertices,
capIndices
);
for (unsigned i = 0; i < capIndices.size(); i++)
capIndices[i] += static_cast<u16>(vertices.size());
vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
indices.insert(indices.end(), capIndices.begin(), capIndices.end());
}
if (vertices.empty() || indices.empty())
return;
// Indices for triangles, so must be multiple of 3.
ENSURE(indices.size() % 3 == 0);
m_BoundingBox = CBoundingBoxAligned();
for (const SVertex& vertex : vertices)
m_BoundingBox += vertex.m_Position;
m_VB = g_VBMan.AllocateChunk(
sizeof(SVertex), vertices.size(), Renderer::Backend::IBuffer::Type::VERTEX, false);
// Allocation might fail (e.g. due to too many vertices).
if (m_VB)
{
// Copy data into backend buffer.
m_VB->m_Owner->UpdateChunkVertices(m_VB.Get(), &vertices[0]);
for (size_t k = 0; k < indices.size(); ++k)
indices[k] += static_cast<u16>(m_VB->m_Index);
m_VBIndices = g_VBMan.AllocateChunk(
sizeof(u16), indices.size(), Renderer::Backend::IBuffer::Type::INDEX, false);
if (m_VBIndices)
m_VBIndices->m_Owner->UpdateChunkVertices(m_VBIndices.Get(), &indices[0]);
}
}
void CTexturedLineRData::CreateLineCap(const SOverlayTexturedLine& line, const CVector3D& corner1, const CVector3D& corner2,
const CVector3D& lineDirectionNormal, SOverlayTexturedLine::LineCapType endCapType, std::vector<SVertex>& verticesOut,
std::vector<u16>& indicesOut)
{
if (endCapType == SOverlayTexturedLine::LINECAP_FLAT)
return; // no action needed, this is the default
// When not in closed mode, we've created artificial points for the start- and endpoints that extend the line in the
// direction of the first and the last segment, respectively. Thus, we know both the start and endpoints have perpendicular
// butt endings, i.e. the end corner vertices on either side of the line extend perpendicularly from the segment direction.
// That is to say, when viewed from the top, we will have something like
// .
// this: and not like this: /|
// ----+ / |
// | / .
// | /
// ----+ /
//
int roundCapPoints = 8; // amount of points to sample along the semicircle for rounded caps (including corner points)
float radius = line.m_Thickness;
CVector3D centerPoint = (corner1 + corner2) * 0.5f;
SVertex centerVertex(centerPoint, CVector2D(0.5f, 0.5f));
u16 indexOffset = static_cast<u16>(verticesOut.size()); // index offset in verticesOut from where we start adding our vertices
switch (endCapType)
{
case SOverlayTexturedLine::LINECAP_SHARP:
{
roundCapPoints = 3; // creates only one point directly ahead
radius *= 1.5f; // make it a bit sharper (note that we don't use the radius for the butt-end corner points so it should be ok)
centerVertex.m_UV.X = 0.480f; // slight visual correction to make the texture match up better at the corner points
}
FALLTHROUGH;
case SOverlayTexturedLine::LINECAP_ROUND:
{
// Draw a rounded line cap in the 3D plane of the line specified by the two corner points and the normal vector of the
// line's direction. The terrain normal at the centroid between the two corner points is perpendicular to this plane.
// The way this works is by taking a vector from the corner points' centroid to one of the corner points (which is then
// of radius length), and rotate it around the terrain normal vector in that centroid. This will rotate the vector in
// the line's plane, producing the desired rounded cap.
// To please OpenGL's winding order, this angle needs to be negated depending on whether we start rotating from
// the (center -> corner1) or (center -> corner2) vector. For the (center -> corner2) vector, we apparently need to use
// the negated angle.
float stepAngle = -(float)(M_PI/(roundCapPoints-1));
// Push the vertices in triangle fan order (easy to generate GL_TRIANGLES indices for afterwards)
// Note that we're manually adding the corner vertices instead of having them be generated by the rotating vector.
// This is because we want to support an overly large radius to make the sharp line ending look sharper.
verticesOut.push_back(centerVertex);
verticesOut.push_back(SVertex(corner2, CVector2D()));
// Get the base vector that we will incrementally rotate in the cap plane to produce the radial sample points.
// Normally corner2 - centerPoint would suffice for this since it is of radius length, but we want to support custom
// radii to support tuning the 'sharpness' of sharp end caps (see above)
CVector3D rotationBaseVector = (corner2 - centerPoint).Normalized() * radius;
// Calculate the normal vector of the plane in which we're going to be drawing the line cap. This is the vector that
// is perpendicular to both baseVector and the 'lineDirectionNormal' vector indicating the direction of the line.
// Note that we shouldn't use terrain->CalcExactNormal() here because if the line is being rendered on top of water,
// then CalcExactNormal will return the normal vector of the terrain that's underwater (which can be quite funky).
CVector3D capPlaneNormal = lineDirectionNormal.Cross(rotationBaseVector).Normalized();
for (int i = 1; i < roundCapPoints - 1; ++i)
{
// Rotate the centerPoint -> corner vector by i*stepAngle radians around the cap plane normal at the center point.
CQuaternion quatRotation;
quatRotation.FromAxisAngle(capPlaneNormal, i * stepAngle);
CVector3D worldPos3D = centerPoint + quatRotation.Rotate(rotationBaseVector);
// Let v range from 0 to 1 as we move along the semi-circle, keep u fixed at 0 (i.e. curve the left vertical edge
// of the texture around the edge of the semicircle)
float u = 0.f;
float v = Clamp((i / static_cast<float>(roundCapPoints - 1)), 0.f, 1.f); // pos, u, v
verticesOut.push_back(SVertex(worldPos3D, CVector2D(u, v)));
}
// connect back to the other butt-end corner point to complete the semicircle
verticesOut.push_back(SVertex(corner1, CVector2D(0.f, 1.f)));
// now push indices in GL_TRIANGLES order; vertices[indexOffset] is the center vertex, vertices[indexOffset + 1] is the
// first corner point, then a bunch of radial samples, and then at the end we have the other corner point again. So:
for (int i=1; i < roundCapPoints; ++i)
{
indicesOut.push_back(indexOffset); // center vertex
indicesOut.push_back(indexOffset + i);
indicesOut.push_back(indexOffset + i + 1);
}
}
break;
case SOverlayTexturedLine::LINECAP_SQUARE:
{
// Extend the (corner1 -> corner2) vector along the direction normal and draw a square line ending consisting of
// three triangles (sort of like a triangle fan)
// NOTE: The order in which the vertices are pushed out determines the visibility, as they
// are rendered only one-sided; the wrong order of vertices will make the cap visible only from the bottom.
verticesOut.push_back(centerVertex);
verticesOut.push_back(SVertex(corner2, CVector2D()));
verticesOut.push_back(SVertex(corner2 + (lineDirectionNormal * (line.m_Thickness)), CVector2D(0.f, 0.33333f))); // extend butt corner point 2 along the normal vector
verticesOut.push_back(SVertex(corner1 + (lineDirectionNormal * (line.m_Thickness)), CVector2D(0.f, 0.66666f))); // extend butt corner point 1 along the normal vector
verticesOut.push_back(SVertex(corner1, CVector2D(0.f, 1.0f))); // push butt corner point 1
for (int i=1; i < 4; ++i)
{
indicesOut.push_back(indexOffset); // center point
indicesOut.push_back(indexOffset + i);
indicesOut.push_back(indexOffset + i + 1);
}
}
break;
default:
break;
}
}
bool CTexturedLineRData::IsVisibleInFrustum(const CFrustum& frustum) const
{
return frustum.IsBoxVisible(m_BoundingBox);
}