1
0
forked from 0ad/0ad
0ad/source/simulation2/helpers/PriorityQueue.h
Ykkrosh 2b57f4f998 # Initial support for formation movement.
Support asynchronous path queries.
Allow escaping when stuck in impassable terrain tiles.
Split Update message in multiple phases, to cope with ordering
requirements.
Support automatic walk/run animation switching.

This was SVN commit r8058.
2010-09-03 09:55:14 +00:00

200 lines
4.2 KiB
C++

/* Copyright (C) 2010 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_PRIORITYQUEUE
#define INCLUDED_PRIORITYQUEUE
/*
* Priority queues for pathfinder.
* (These probably aren't suitable for more general uses.)
*/
#ifdef NDEBUG
#define PRIORITYQUEUE_DEBUG 0
#else
#define PRIORITYQUEUE_DEBUG 1
#endif
template <typename Item>
struct QueueItemPriority
{
bool operator()(const Item& a, const Item& b)
{
if (a.rank > b.rank) // higher costs are lower priority
return true;
if (a.rank < b.rank)
return false;
// Need to tie-break to get a consistent ordering
// TODO: Should probably tie-break on g or h or something, but don't bother for now
if (a.id < b.id)
return true;
if (b.id < a.id)
return false;
#if PRIORITYQUEUE_DEBUG
debug_warn(L"duplicate tiles in queue");
#endif
return false;
}
};
/**
* Priority queue implemented as a binary heap.
* This is quite dreadfully slow in MSVC's debug STL implementation,
* so we shouldn't use it unless we reimplement the heap functions more efficiently.
*/
template <typename ID, typename R>
class PriorityQueueHeap
{
public:
struct Item
{
ID id;
R rank; // f = g+h (estimated total cost of path through here)
};
void push(const Item& item)
{
m_Heap.push_back(item);
push_heap(m_Heap.begin(), m_Heap.end(), QueueItemPriority<Item>());
}
Item* find(ID id)
{
for (size_t n = 0; n < m_Heap.size(); ++n)
{
if (m_Heap[n].id == id)
return &m_Heap[n];
}
return NULL;
}
void promote(ID id, R newrank)
{
for (size_t n = 0; n < m_Heap.size(); ++n)
{
if (m_Heap[n].id == id)
{
#if PRIORITYQUEUE_DEBUG
debug_assert(m_Heap[n].rank > newrank);
#endif
m_Heap[n].rank = newrank;
push_heap(m_Heap.begin(), m_Heap.begin()+n+1, QueueItemPriority<Item>());
return;
}
}
}
Item pop()
{
#if PRIORITYQUEUE_DEBUG
debug_assert(m_Heap.size());
#endif
Item r = m_Heap.front();
pop_heap(m_Heap.begin(), m_Heap.end(), QueueItemPriority<Item>());
m_Heap.pop_back();
return r;
}
bool empty()
{
return m_Heap.empty();
}
size_t size()
{
return m_Heap.size();
}
std::vector<Item> m_Heap;
};
/**
* Priority queue implemented as an unsorted array.
* This means pop() is O(n), but push and promote are O(1), and n is typically small
* (average around 50-100 in some rough tests).
* It seems fractionally slower than a binary heap in optimised builds, but is
* much simpler and less susceptible to MSVC's painfully slow debug STL.
*/
template <typename ID, typename R>
class PriorityQueueList
{
public:
struct Item
{
ID id;
R rank; // f = g+h (estimated total cost of path through here)
};
void push(const Item& item)
{
m_List.push_back(item);
}
Item* find(ID id)
{
for (size_t n = 0; n < m_List.size(); ++n)
{
if (m_List[n].id == id)
return &m_List[n];
}
return NULL;
}
void promote(ID id, R newrank)
{
find(id)->rank = newrank;
}
Item pop()
{
#if PRIORITYQUEUE_DEBUG
debug_assert(m_List.size());
#endif
// Loop backwards looking for the best (it's most likely to be one
// we've recently pushed, so going backwards saves a bit of copying)
Item best = m_List.back();
size_t bestidx = m_List.size()-1;
for (ssize_t i = (ssize_t)bestidx-1; i >= 0; --i)
{
if (QueueItemPriority<Item>()(best, m_List[i]))
{
bestidx = i;
best = m_List[i];
}
}
// Swap the matched element with the last in the list, then pop the new last
m_List[bestidx] = m_List[m_List.size()-1];
m_List.pop_back();
return best;
}
bool empty()
{
return m_List.empty();
}
size_t size()
{
return m_List.size();
}
std::vector<Item> m_List;
};
#endif // INCLUDED_PRIORITYQUEUE