1
0
forked from 0ad/0ad
0ad/source/graphics/Terrain.cpp
prefect 7dee30e24c - Terrain self-shadows (only noticeable with a low angle of sun)
- explicitly split ambient and diffuse
- add renderer.shadowZBias to bias depths in the depth texture
  and avoid flickering artifacts caused by Z fighting
- cantabrian_generated uses new light values so that shadows aren't
pitch
  black

This was SVN commit r3508.
2006-02-13 14:18:20 +00:00

433 lines
11 KiB
C++
Executable File

///////////////////////////////////////////////////////////////////////////////
//
// Name: Terrain.cpp
// Author: Rich Cross
// Contact: rich@wildfiregames.com
//
///////////////////////////////////////////////////////////////////////////////
#include "precompiled.h"
#include "lib/res/graphics/ogl_tex.h"
#include "lib/res/mem.h"
#include "renderer/Renderer.h"
#include "renderer/WaterManager.h"
#include <string.h>
#include "Terrain.h"
#include "MathUtil.h"
///////////////////////////////////////////////////////////////////////////////
// CTerrain constructor
CTerrain::CTerrain() : m_Heightmap(0), m_Patches(0), m_MapSize(0), m_MapSizePatches(0)
{
}
///////////////////////////////////////////////////////////////////////////////
// CTerrain constructor
CTerrain::~CTerrain()
{
ReleaseData();
}
///////////////////////////////////////////////////////////////////////////////
// ReleaseData: delete any data allocated by this terrain
void CTerrain::ReleaseData()
{
delete[] m_Heightmap;
delete[] m_Patches;
}
///////////////////////////////////////////////////////////////////////////////
// Initialise: initialise this terrain to the given size (in patches per side);
// using given heightmap to setup elevation data
bool CTerrain::Initialize(u32 size,const u16* data)
{
// clean up any previous terrain
ReleaseData();
// store terrain size
m_MapSize=(size*PATCH_SIZE)+1;
m_MapSizePatches=size;
//WaterManager *WaterMgr = g_Renderer.GetWaterManager();
//WaterMgr->InitWave();
// allocate data for new terrain
m_Heightmap=new u16[m_MapSize*m_MapSize];
m_Patches=new CPatch[m_MapSizePatches*m_MapSizePatches];
// given a heightmap?
if (data) {
// yes; keep a copy of it
memcpy2(m_Heightmap,data,m_MapSize*m_MapSize*sizeof(u16));
} else {
// build a flat terrain
memset(m_Heightmap,0,m_MapSize*m_MapSize*sizeof(u16));
}
// setup patch parents, indices etc
InitialisePatches();
return true;
}
///////////////////////////////////////////////////////////////////////////////
// CalcPosition: calculate the world space position of the vertex at (i,j)
void CTerrain::CalcPosition(i32 i, i32 j, CVector3D& pos) const
{
u16 height;
if ((u32)i < m_MapSize && (u32)j < m_MapSize) // will reject negative coordinates
height = m_Heightmap[j*m_MapSize + i];
else
height = 0;
pos.X = float(i)*CELL_SIZE;
pos.Y = float(height)*HEIGHT_SCALE;
pos.Z = float(j)*CELL_SIZE;
}
///////////////////////////////////////////////////////////////////////////////
// CalcNormal: calculate the world space normal of the vertex at (i,j)
void CTerrain::CalcNormal(u32 i, u32 j, CVector3D& normal) const
{
CVector3D left, right, up, down;
left.Clear();
right.Clear();
up.Clear();
down.Clear();
// get position of vertex where normal is being evaluated
CVector3D basepos;
CalcPosition(i,j,basepos);
CVector3D tmp;
if (i>0) {
CalcPosition(i-1,j,tmp);
left=tmp-basepos;
}
if (i<m_MapSize-1) {
CalcPosition(i+1,j,tmp);
right=tmp-basepos;
}
if (j>0) {
CalcPosition(i,j-1,tmp);
up=tmp-basepos;
}
if (j<m_MapSize-1) {
CalcPosition(i,j+1,tmp);
down=tmp-basepos;
}
CVector3D n0 = up.Cross(left);
CVector3D n1 = left.Cross(down);
CVector3D n2 = down.Cross(right);
CVector3D n3 = right.Cross(up);
normal = n0 + n1 + n2 + n3;
float nlen=normal.GetLength();
if (nlen>0.00001f) normal*=1.0f/nlen;
}
///////////////////////////////////////////////////////////////////////////////
// GetPatch: return the patch at (x,z) in patch space, or null if the patch is
// out of bounds
CPatch* CTerrain::GetPatch(i32 x, i32 z) const
{
if (x<0 || x>=i32(m_MapSizePatches)) return 0;
if (z<0 || z>=i32(m_MapSizePatches)) return 0;
return &m_Patches[(z*m_MapSizePatches)+x];
}
///////////////////////////////////////////////////////////////////////////////
// GetPatch: return the tile at (x,z) in tile space, or null if the tile is out
// of bounds
CMiniPatch* CTerrain::GetTile(i32 x, i32 z) const
{
if (x<0 || x>=i32(m_MapSize)-1) return 0;
if (z<0 || z>=i32(m_MapSize)-1) return 0;
CPatch* patch=GetPatch(x/PATCH_SIZE,z/PATCH_SIZE);
return &patch->m_MiniPatches[z%PATCH_SIZE][x%PATCH_SIZE];
}
float CTerrain::getVertexGroundLevel(int x, int z) const
{
if (x < 0)
{
x = 0;
}
else if (x >= (int) m_MapSize)
{
x = m_MapSize - 1;
}
if (z < 0)
{
z = 0;
}
else if (z >= (int) m_MapSize)
{
z = m_MapSize - 1;
}
return HEIGHT_SCALE * m_Heightmap[z*m_MapSize + x];
}
float CTerrain::getExactGroundLevel(float x, float y) const
{
x /= (float)CELL_SIZE;
y /= (float)CELL_SIZE;
int xi = (int)floor(x);
int yi = (int)floor(y);
float xf = x - (float)xi;
float yf = y - (float)yi;
if (xi < 0)
{
xi = 0; xf = 0.0f;
}
else if (xi >= (int)m_MapSize-1)
{
xi = m_MapSize - 2; xf = 1.0f;
}
if (yi < 0)
{
yi = 0; yf = 0.0f;
}
else if (yi >= (int)m_MapSize-1)
{
yi = m_MapSize - 2; yf = 1.0f;
}
/*
debug_assert( isOnMap( x, y ) );
if( !isOnMap( x, y ) )
return 0.0f;
*/
float h00 = m_Heightmap[yi*m_MapSize + xi];
float h01 = m_Heightmap[yi*m_MapSize + xi + m_MapSize];
float h10 = m_Heightmap[yi*m_MapSize + xi + 1];
float h11 = m_Heightmap[yi*m_MapSize + xi + m_MapSize + 1];
return (HEIGHT_SCALE * (
(1 - yf) * ((1 - xf) * h00 + xf * h10)
+ yf * ((1 - xf) * h01 + xf * h11)));
}
///////////////////////////////////////////////////////////////////////////////
// Resize: resize this terrain to the given size (in patches per side)
void CTerrain::Resize(u32 size)
{
if (size==m_MapSizePatches) {
// inexplicable request to resize terrain to the same size .. ignore it
return;
}
if (!m_Heightmap) {
// not yet created a terrain; build a default terrain of the given size now
Initialize(size,0);
return;
}
// allocate data for new terrain
u32 newMapSize=(size*PATCH_SIZE)+1;
u16* newHeightmap=new u16[newMapSize*newMapSize];
CPatch* newPatches=new CPatch[size*size];
if (size>m_MapSizePatches) {
// new map is bigger than old one - zero the heightmap so we don't get uninitialised
// height data along the expanded edges
memset(newHeightmap,0,newMapSize*newMapSize);
}
// now copy over rows of data
u32 j;
u16* src=m_Heightmap;
u16* dst=newHeightmap;
u32 copysize=newMapSize>m_MapSize ? m_MapSize : newMapSize;
for (j=0;j<copysize;j++) {
memcpy2(dst,src,copysize*sizeof(u16));
dst+=copysize;
src+=m_MapSize;
if (newMapSize>m_MapSize) {
// entend the last height to the end of the row
for (u32 i=0;i<newMapSize-m_MapSize;i++) {
*dst++=*(src-1);
}
}
}
if (newMapSize>m_MapSize) {
// copy over heights of the last row to any remaining rows
src=newHeightmap+((m_MapSize-1)*newMapSize);
dst=src+newMapSize;
for (u32 i=0;i<newMapSize-m_MapSize;i++) {
memcpy2(dst,src,newMapSize*sizeof(u16));
dst+=newMapSize;
}
}
// now build new patches
for (j=0;j<size;j++) {
for (u32 i=0;i<size;i++) {
// copy over texture data from existing tiles, if possible
if (i<m_MapSizePatches && j<m_MapSizePatches) {
memcpy2(newPatches[j*size+i].m_MiniPatches,m_Patches[j*m_MapSizePatches+i].m_MiniPatches,sizeof(CMiniPatch)*PATCH_SIZE*PATCH_SIZE);
}
}
if (j<m_MapSizePatches && size>m_MapSizePatches) {
// copy over the last tile from each column
for (u32 n=0;n<size-m_MapSizePatches;n++) {
for (int m=0;m<PATCH_SIZE;m++) {
CMiniPatch& src=m_Patches[j*m_MapSizePatches+m_MapSizePatches-1].m_MiniPatches[m][15];
for (int k=0;k<PATCH_SIZE;k++) {
CMiniPatch& dst=newPatches[j*size+m_MapSizePatches+n].m_MiniPatches[m][k];
dst.Tex1=src.Tex1;
dst.Tex1Priority=src.Tex1Priority;
}
}
}
}
}
if (size>m_MapSizePatches) {
// copy over the last tile from each column
CPatch* srcpatch=&newPatches[(m_MapSizePatches-1)*size];
CPatch* dstpatch=srcpatch+size;
for (u32 p=0;p<size-m_MapSizePatches;p++) {
for (u32 n=0;n<size;n++) {
for (int m=0;m<PATCH_SIZE;m++) {
for (int k=0;k<PATCH_SIZE;k++) {
CMiniPatch& src=srcpatch->m_MiniPatches[15][k];
CMiniPatch& dst=dstpatch->m_MiniPatches[m][k];
dst.Tex1=src.Tex1;
dst.Tex1Priority=src.Tex1Priority;
}
}
srcpatch++;
dstpatch++;
}
}
}
// release all the original data
ReleaseData();
// store new data
m_Heightmap=newHeightmap;
m_Patches=newPatches;
m_MapSize=newMapSize;
m_MapSizePatches=size;
// initialise all the new patches
InitialisePatches();
}
///////////////////////////////////////////////////////////////////////////////
// InitialisePatches: initialise patch data
void CTerrain::InitialisePatches()
{
for (u32 j=0;j<m_MapSizePatches;j++) {
for (u32 i=0;i<m_MapSizePatches;i++) {
CPatch* patch=GetPatch(i,j);
patch->Initialize(this,i,j);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// SetHeightMap: set up a new heightmap from 16-bit source data;
// assumes heightmap matches current terrain size
void CTerrain::SetHeightMap(u16* heightmap)
{
// keep a copy of the given heightmap
memcpy2(m_Heightmap,heightmap,m_MapSize*m_MapSize*sizeof(u16));
// recalculate patch bounds, invalidate vertices
for (u32 j=0;j<m_MapSizePatches;j++) {
for (u32 i=0;i<m_MapSizePatches;i++) {
CPatch* patch=GetPatch(i,j);
patch->InvalidateBounds();
patch->SetDirty(RENDERDATA_UPDATE_VERTICES);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// FlattenArea: flatten out an area of terrain (specified in world space
// coords); return the average height of the flattened area
float CTerrain::FlattenArea(float x0,float x1,float z0,float z1)
{
u32 tx0=u32(clamp(int(float(x0/CELL_SIZE)),0,int(m_MapSize)));
u32 tx1=u32(clamp(int(float(x1/CELL_SIZE)+1.0f),0,int(m_MapSize)));
u32 tz0=u32(clamp(int(float(z0/CELL_SIZE)),0,int(m_MapSize)));
u32 tz1=u32(clamp(int(float(z1/CELL_SIZE)+1.0f),0,int(m_MapSize)));
u32 count=0;
u32 y=0;
for (u32 x=tx0;x<=tx1;x++) {
for (u32 z=tz0;z<=tz1;z++) {
y+=m_Heightmap[z*m_MapSize + x];
count++;
}
}
y/=count;
for (u32 x=tx0;x<=tx1;x++) {
for (u32 z=tz0;z<=tz1;z++) {
m_Heightmap[z*m_MapSize + x]=(u16)y;
CPatch* patch=GetPatch(x/PATCH_SIZE,z/PATCH_SIZE);
patch->SetDirty(RENDERDATA_UPDATE_VERTICES);
}
}
return y*HEIGHT_SCALE;
}
///////////////////////////////////////////////////////////////////////////////
void CTerrain::MakeDirty(int x0, int z0, int x1, int z1, int dirtyFlags)
{
// flag vertex data as dirty for affected patches, and rebuild bounds of these patches
int px0 = clamp((x0/PATCH_SIZE)-1, 0, (int)m_MapSizePatches);
int px1 = clamp((x1/PATCH_SIZE)+1, 0, (int)m_MapSizePatches);
int pz0 = clamp((z0/PATCH_SIZE)-1, 0, (int)m_MapSizePatches);
int pz1 = clamp((z1/PATCH_SIZE)+1, 0, (int)m_MapSizePatches);
for (int j = pz0; j < pz1; j++) {
for (int i = px0; i < px1; i++) {
CPatch* patch = GetPatch(i,j);
if (dirtyFlags & RENDERDATA_UPDATE_VERTICES)
patch->CalcBounds();
patch->SetDirty(dirtyFlags);
}
}
}
void CTerrain::MakeDirty(int dirtyFlags)
{
for (u32 j = 0; j < m_MapSizePatches; j++) {
for (u32 i = 0; i < m_MapSizePatches; i++) {
CPatch* patch = GetPatch(i,j);
if (dirtyFlags & RENDERDATA_UPDATE_VERTICES)
patch->CalcBounds();
patch->SetDirty(dirtyFlags);
}
}
}