0ad/source/lib/allocators/headerless.cpp
Ykkrosh 85e2e72eb7 Fix TestHeaderless failure on GCC 4.9.
Once 'delete' is called on an object, that object no longer exists, and
accessing its member variables is undefined behaviour. GCC 4.9's
optimiser recognises this, and eliminates any writes to member variables
inside the destructor, since it knows they cannot legally be read later.

BoundaryTagManager relied on ~FreedBlock resetting its memory to 0, so
this optimisation broke it. Replace the placement new/delete with plain
non-magic Setup/Reset functions, to avoid the optimisation.

Fixes #2481.

This was SVN commit r15334.
2014-06-11 19:50:38 +00:00

774 lines
18 KiB
C++

/* Copyright (c) 2010 Wildfire Games
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* (header-less) pool-based heap allocator
*/
#include "precompiled.h"
#include "lib/allocators/headerless.h"
#include "lib/bits.h"
#include "lib/allocators/pool.h"
static const bool performSanityChecks = true;
// shared by Impl::Allocate and FreedBlock::Validate
static bool IsValidSize(size_t size);
//-----------------------------------------------------------------------------
// this combines the boundary tags and link fields into one structure,
// which is safer than direct pointer arithmetic.
//
// it is written to freed memory, which is fine because IsValidSize ensures
// the allocations are large enough.
class FreedBlock
{
friend class RangeList; // manipulates link fields directly
public:
// (required for RangeList::m_sentinel)
FreedBlock()
{
}
void Setup(uintptr_t id, size_t size)
{
m_magic = s_magic;
m_size = size;
m_id = id;
}
void Reset()
{
// clear all fields to prevent accidental reuse
prev = next = 0;
m_id = 0;
m_size = ~size_t(0);
m_magic = 0;
}
size_t Size() const
{
return m_size;
}
/**
* @return whether this appears to be a FreedBlock instance with the
* desired ID. for additional safety, also call Validate().
**/
bool IsFreedBlock(uintptr_t id) const
{
if(m_id != id)
return false;
if(m_magic != s_magic)
return false;
return true;
}
/**
* warn if any invariant doesn't hold.
**/
void Validate(uintptr_t id) const
{
if(!performSanityChecks) return;
// note: RangeList::Validate implicitly checks the prev and next
// fields by iterating over the list.
// note: we can't check for prev != next because we're called for
// footers as well, and they don't have valid pointers.
ENSURE(IsValidSize(m_size));
ENSURE(IsFreedBlock(id));
}
private:
// note: the magic and ID fields are stored at both ends of this
// class to increase the chance of detecting memory corruption.
static const u64 s_magic = 0xFF55AA00BBCCDDEEull;
u64 m_magic;
FreedBlock* prev;
FreedBlock* next;
// size [bytes] of the entire memory block, including header and footer
size_t m_size;
// this differentiates between headers and footers.
uintptr_t m_id;
};
static bool IsValidSize(size_t size)
{
// note: we disallow the questionable practice of zero-byte allocations
// because they may be indicative of bugs.
if(size < HeaderlessAllocator::minAllocationSize)
return false;
if(size % HeaderlessAllocator::allocationAlignment)
return false;
return true;
}
//-----------------------------------------------------------------------------
// freelists
//-----------------------------------------------------------------------------
// policy: address-ordered good fit
// mechanism: segregated range lists of power-of-two size classes
struct AddressOrder
{
static bool ShouldInsertBefore(FreedBlock* current, FreedBlock* successor)
{
return current < successor;
}
};
// "range list" is a freelist of similarly-sized blocks.
class RangeList
{
public:
RangeList()
{
Reset();
}
void Reset()
{
m_sentinel.prev = &m_sentinel;
m_sentinel.next = &m_sentinel;
m_freeBlocks = 0;
m_freeBytes = 0;
}
template<class InsertPolicy>
void Insert(FreedBlock* freedBlock)
{
// find freedBlock before which to insert
FreedBlock* successor;
for(successor = m_sentinel.next; successor != &m_sentinel; successor = successor->next)
{
if(InsertPolicy::ShouldInsertBefore(freedBlock, successor))
break;
}
freedBlock->prev = successor->prev;
freedBlock->next = successor;
successor->prev->next = freedBlock;
successor->prev = freedBlock;
m_freeBlocks++;
m_freeBytes += freedBlock->Size();
}
/**
* @return the first freed block of size >= minSize or 0 if none exists.
**/
FreedBlock* Find(size_t minSize)
{
for(FreedBlock* freedBlock = m_sentinel.next; freedBlock != &m_sentinel; freedBlock = freedBlock->next)
{
if(freedBlock->Size() >= minSize)
return freedBlock;
}
// none found, so average block size is less than the desired size
ENSURE(m_freeBytes/m_freeBlocks < minSize);
return 0;
}
void Remove(FreedBlock* freedBlock)
{
freedBlock->next->prev = freedBlock->prev;
freedBlock->prev->next = freedBlock->next;
ENSURE(m_freeBlocks != 0);
ENSURE(m_freeBytes >= freedBlock->Size());
m_freeBlocks--;
m_freeBytes -= freedBlock->Size();
}
void Validate(uintptr_t id) const
{
if(!performSanityChecks) return;
size_t freeBlocks = 0, freeBytes = 0;
for(FreedBlock* freedBlock = m_sentinel.next; freedBlock != &m_sentinel; freedBlock = freedBlock->next)
{
freedBlock->Validate(id);
freeBlocks++;
freeBytes += freedBlock->Size();
}
for(FreedBlock* freedBlock = m_sentinel.prev; freedBlock != &m_sentinel; freedBlock = freedBlock->prev)
{
freedBlock->Validate(id);
freeBlocks++;
freeBytes += freedBlock->Size();
}
// our idea of the number and size of free blocks is correct
ENSURE(freeBlocks == m_freeBlocks*2 && freeBytes == m_freeBytes*2);
// if empty, state must be as established by Reset
ENSURE(!IsEmpty() || (m_sentinel.next == &m_sentinel && m_sentinel.prev == &m_sentinel));
}
bool IsEmpty() const
{
return (m_freeBlocks == 0);
}
size_t FreeBlocks() const
{
return m_freeBlocks;
}
size_t FreeBytes() const
{
return m_freeBytes;
}
private:
// a sentinel simplifies Insert and Remove. we store it here instead of
// in a separate array to improve locality (it is actually accessed).
mutable FreedBlock m_sentinel;
size_t m_freeBlocks;
size_t m_freeBytes;
};
//-----------------------------------------------------------------------------
class SegregatedRangeLists
{
public:
SegregatedRangeLists()
{
Reset();
}
void Reset()
{
m_bitmap = 0;
for(size_t i = 0; i < numRangeLists; i++)
m_rangeLists[i].Reset();
}
void Insert(FreedBlock* freedBlock)
{
const size_t sizeClass = SizeClass(freedBlock->Size());
m_rangeLists[sizeClass].Insert<AddressOrder>(freedBlock);
m_bitmap |= Bit<uintptr_t>(sizeClass);
}
/**
* @return the first freed block of size >= minSize or 0 if none exists.
**/
FreedBlock* Find(size_t minSize)
{
// iterate over all large enough, non-empty size classes
// (zero overhead for empty size classes)
const size_t minSizeClass = SizeClass(minSize);
size_t sizeClassBits = m_bitmap & ((~size_t(0)) << minSizeClass);
while(sizeClassBits)
{
const size_t size = ValueOfLeastSignificantOneBit(sizeClassBits);
sizeClassBits &= ~size; // remove from sizeClassBits
const size_t sizeClass = SizeClass(size);
FreedBlock* freedBlock = m_rangeLists[sizeClass].Find(minSize);
if(freedBlock)
return freedBlock;
}
// apparently all classes above minSizeClass are empty,
// or the above would have succeeded.
ENSURE(m_bitmap < Bit<uintptr_t>(minSizeClass+1));
return 0;
}
void Remove(FreedBlock* freedBlock)
{
const size_t sizeClass = SizeClass(freedBlock->Size());
m_rangeLists[sizeClass].Remove(freedBlock);
// (masking with !IsEmpty() << sizeClass would probably be faster)
if(m_rangeLists[sizeClass].IsEmpty())
m_bitmap &= ~Bit<uintptr_t>(sizeClass);
}
void Validate(uintptr_t id) const
{
for(size_t i = 0; i < numRangeLists; i++)
{
m_rangeLists[i].Validate(id);
// both bitmap and list must agree on whether they are empty
ENSURE(((m_bitmap & Bit<uintptr_t>(i)) == 0) == m_rangeLists[i].IsEmpty());
}
}
size_t FreeBlocks() const
{
size_t freeBlocks = 0;
for(size_t i = 0; i < numRangeLists; i++)
freeBlocks += m_rangeLists[i].FreeBlocks();
return freeBlocks;
}
size_t FreeBytes() const
{
size_t freeBytes = 0;
for(size_t i = 0; i < numRangeLists; i++)
freeBytes += m_rangeLists[i].FreeBytes();
return freeBytes;
}
private:
/**
* @return "size class" of a given size.
* class i > 0 contains blocks of size (2**(i-1), 2**i].
**/
static size_t SizeClass(size_t size)
{
return ceil_log2(size);
}
static uintptr_t ValueOfLeastSignificantOneBit(uintptr_t x)
{
return (x & -(intptr_t)x);
}
// segregated, i.e. one list per size class.
static const size_t numRangeLists = sizeof(uintptr_t)*CHAR_BIT;
RangeList m_rangeLists[numRangeLists];
// bit i set <==> size class i's freelist is not empty.
// this allows finding a non-empty list in O(1).
uintptr_t m_bitmap;
};
//-----------------------------------------------------------------------------
// coalescing
//-----------------------------------------------------------------------------
// policy: immediately coalesce
// mechanism: boundary tags
// note: the id and magic values are all that differentiates tags from
// user data. this isn't 100% reliable, but as with headers, we don't want
// to insert extra boundary tags into the allocated memory.
// note: footers consist of Tag{magic, ID, size}, while headers also
// need prev/next pointers. this could comfortably fit in 64 bytes,
// but we don't want to inherit headers from a base class because its
// prev/next pointers should reside between the magic and ID fields.
// maintaining separate FreedBlock and Footer classes is also undesirable;
// we prefer to use FreedBlock for both, which increases the minimum
// allocation size to 64 + allocationAlignment, e.g. 128.
// that's not a problem because the allocator is designed for
// returning pages or IO buffers (4..256 KB).
cassert(HeaderlessAllocator::minAllocationSize >= 2*sizeof(FreedBlock));
class BoundaryTagManager
{
public:
BoundaryTagManager()
: m_freeBlocks(0), m_freeBytes(0)
{
}
FreedBlock* WriteTags(u8* p, size_t size)
{
FreedBlock* freedBlock = (FreedBlock*)p;
freedBlock->Setup(s_headerId, size);
Footer(freedBlock)->Setup(s_footerId, size);
m_freeBlocks++;
m_freeBytes += size;
Validate(freedBlock);
return freedBlock;
}
void RemoveTags(FreedBlock* freedBlock)
{
Validate(freedBlock);
ENSURE(m_freeBlocks != 0);
ENSURE(m_freeBytes >= freedBlock->Size());
m_freeBlocks--;
m_freeBytes -= freedBlock->Size();
FreedBlock* footer = Footer(freedBlock);
freedBlock->Reset();
footer->Reset();
}
FreedBlock* PrecedingBlock(u8* p, u8* beginningOfPool) const
{
if(p == beginningOfPool) // avoid accessing invalid memory
return 0;
FreedBlock* precedingBlock;
{
FreedBlock* const footer = (FreedBlock*)(p - sizeof(FreedBlock));
if(!footer->IsFreedBlock(s_footerId))
return 0;
footer->Validate(s_footerId);
precedingBlock = (FreedBlock*)(p - footer->Size());
}
Validate(precedingBlock);
return precedingBlock;
}
FreedBlock* FollowingBlock(u8* p, size_t size, u8* endOfPool) const
{
if(p+size == endOfPool) // avoid accessing invalid memory
return 0;
FreedBlock* const followingBlock = (FreedBlock*)(p + size);
if(!followingBlock->IsFreedBlock(s_headerId))
return 0;
Validate(followingBlock);
return followingBlock;
}
size_t FreeBlocks() const
{
return m_freeBlocks;
}
size_t FreeBytes() const
{
return m_freeBytes;
}
// (generated via GUID)
static const uintptr_t s_headerId = 0x111E8E6Fu;
static const uintptr_t s_footerId = 0x4D745342u;
private:
void Validate(FreedBlock* freedBlock) const
{
if(!performSanityChecks) return;
// the existence of freedBlock means our bookkeeping better have
// records of at least that much memory.
ENSURE(m_freeBlocks != 0);
ENSURE(m_freeBytes >= freedBlock->Size());
freedBlock->Validate(s_headerId);
Footer(freedBlock)->Validate(s_footerId);
}
static FreedBlock* Footer(FreedBlock* freedBlock)
{
u8* const p = (u8*)freedBlock;
return (FreedBlock*)(p + freedBlock->Size() - sizeof(FreedBlock));
}
size_t m_freeBlocks;
size_t m_freeBytes;
};
//-----------------------------------------------------------------------------
// stats
//-----------------------------------------------------------------------------
class Stats
{
public:
void OnReset()
{
if(!performSanityChecks) return;
m_totalAllocatedBlocks = m_totalAllocatedBytes = 0;
m_totalDeallocatedBlocks = m_totalDeallocatedBytes = 0;
m_currentExtantBlocks = m_currentExtantBytes = 0;
m_currentFreeBlocks = m_currentFreeBytes = 0;
}
void OnAllocate(size_t size)
{
if(!performSanityChecks) return;
m_totalAllocatedBlocks++;
m_totalAllocatedBytes += size;
m_currentExtantBlocks++;
m_currentExtantBytes += size;
}
void OnDeallocate(size_t size)
{
if(!performSanityChecks) return;
m_totalDeallocatedBlocks++;
m_totalDeallocatedBytes += size;
ENSURE(m_totalDeallocatedBlocks <= m_totalAllocatedBlocks);
ENSURE(m_totalDeallocatedBytes <= m_totalAllocatedBytes);
ENSURE(m_currentExtantBlocks != 0);
ENSURE(m_currentExtantBytes >= size);
m_currentExtantBlocks--;
m_currentExtantBytes -= size;
}
void OnAddToFreelist(size_t size)
{
m_currentFreeBlocks++;
m_currentFreeBytes += size;
}
void OnRemoveFromFreelist(size_t size)
{
if(!performSanityChecks) return;
ENSURE(m_currentFreeBlocks != 0);
ENSURE(m_currentFreeBytes >= size);
m_currentFreeBlocks--;
m_currentFreeBytes -= size;
}
void Validate() const
{
if(!performSanityChecks) return;
ENSURE(m_totalDeallocatedBlocks <= m_totalAllocatedBlocks);
ENSURE(m_totalDeallocatedBytes <= m_totalAllocatedBytes);
ENSURE(m_currentExtantBlocks == m_totalAllocatedBlocks-m_totalDeallocatedBlocks);
ENSURE(m_currentExtantBytes == m_totalAllocatedBytes-m_totalDeallocatedBytes);
}
size_t FreeBlocks() const
{
return m_currentFreeBlocks;
}
size_t FreeBytes() const
{
return m_currentFreeBytes;
}
private:
u64 m_totalAllocatedBlocks, m_totalAllocatedBytes;
u64 m_totalDeallocatedBlocks, m_totalDeallocatedBytes;
u64 m_currentExtantBlocks, m_currentExtantBytes;
u64 m_currentFreeBlocks, m_currentFreeBytes;
};
//-----------------------------------------------------------------------------
// HeaderlessAllocator::Impl
//-----------------------------------------------------------------------------
static void AssertEqual(size_t x1, size_t x2, size_t x3)
{
ENSURE(x1 == x2 && x2 == x3);
}
class HeaderlessAllocator::Impl
{
public:
Impl(size_t poolSize)
{
(void)pool_create(&m_pool, poolSize, 0);
Reset();
}
~Impl()
{
Validate();
(void)pool_destroy(&m_pool);
}
void Reset()
{
pool_free_all(&m_pool);
m_segregatedRangeLists.Reset();
m_stats.OnReset();
Validate();
}
NOTHROW_DEFINE void* Allocate(size_t size)
{
ENSURE(IsValidSize(size));
Validate();
void* p = TakeAndSplitFreeBlock(size);
if(!p)
{
p = pool_alloc(&m_pool, size);
if(!p) // both failed; don't throw bad_alloc because
return 0; // this often happens with the file cache.
}
// (NB: we must not update the statistics if allocation failed)
m_stats.OnAllocate(size);
Validate();
ENSURE((uintptr_t)p % allocationAlignment == 0);
return p;
}
void Deallocate(u8* p, size_t size)
{
ENSURE((uintptr_t)p % allocationAlignment == 0);
ENSURE(IsValidSize(size));
ENSURE(pool_contains(&m_pool, p));
ENSURE(pool_contains(&m_pool, p+size-1));
Validate();
m_stats.OnDeallocate(size);
Coalesce(p, size);
AddToFreelist(p, size);
Validate();
}
void Validate() const
{
if(!performSanityChecks) return;
m_segregatedRangeLists.Validate(BoundaryTagManager::s_headerId);
m_stats.Validate();
AssertEqual(m_stats.FreeBlocks(), m_segregatedRangeLists.FreeBlocks(), m_boundaryTagManager.FreeBlocks());
AssertEqual(m_stats.FreeBytes(), m_segregatedRangeLists.FreeBytes(), m_boundaryTagManager.FreeBytes());
}
private:
void AddToFreelist(u8* p, size_t size)
{
FreedBlock* freedBlock = m_boundaryTagManager.WriteTags(p, size);
m_segregatedRangeLists.Insert(freedBlock);
m_stats.OnAddToFreelist(size);
}
void RemoveFromFreelist(FreedBlock* freedBlock)
{
m_stats.OnRemoveFromFreelist(freedBlock->Size());
m_segregatedRangeLists.Remove(freedBlock);
m_boundaryTagManager.RemoveTags(freedBlock);
}
/**
* expand a block by coalescing it with its free neighbor(s).
**/
void Coalesce(u8*& p, size_t& size)
{
{
FreedBlock* precedingBlock = m_boundaryTagManager.PrecedingBlock(p, m_pool.da.base);
if(precedingBlock)
{
p -= precedingBlock->Size();
size += precedingBlock->Size();
RemoveFromFreelist(precedingBlock);
}
}
{
FreedBlock* followingBlock = m_boundaryTagManager.FollowingBlock(p, size, m_pool.da.base+m_pool.da.pos);
if(followingBlock)
{
size += followingBlock->Size();
RemoveFromFreelist(followingBlock);
}
}
}
void* TakeAndSplitFreeBlock(size_t size)
{
u8* p;
size_t leftoverSize = 0;
{
FreedBlock* freedBlock = m_segregatedRangeLists.Find(size);
if(!freedBlock)
return 0;
p = (u8*)freedBlock;
leftoverSize = freedBlock->Size() - size;
RemoveFromFreelist(freedBlock);
}
if(IsValidSize(leftoverSize))
AddToFreelist(p+size, leftoverSize);
return p;
}
Pool m_pool;
SegregatedRangeLists m_segregatedRangeLists;
BoundaryTagManager m_boundaryTagManager;
Stats m_stats;
};
//-----------------------------------------------------------------------------
HeaderlessAllocator::HeaderlessAllocator(size_t poolSize)
: impl(new Impl(poolSize))
{
}
void HeaderlessAllocator::Reset()
{
return impl->Reset();
}
NOTHROW_DEFINE void* HeaderlessAllocator::Allocate(size_t size)
{
return impl->Allocate(size);
}
void HeaderlessAllocator::Deallocate(void* p, size_t size)
{
return impl->Deallocate((u8*)p, size);
}
void HeaderlessAllocator::Validate() const
{
return impl->Validate();
}