0ad/source/simulation/Simulation.cpp
Matei fa229121ec Bug fixes and more game setup options.
- Added "Screenshot Mode" and "Fog of War" game attributes. (Screenshot
Mode causes units to be initialized to Hold stance instead of Aggress
and also forces LOS to be All Visible. Atlas turn on Screenshot Mode by
default so units don't try to kill each other in there.)
- Modified LOSManager to allow disabling fog of war.
- Removed some debug message spam.
- Enabled line antialiasing for aura rendering and fixed some bugs that
caused strange effects (color was not set properly for the center point,
and when a unit was both mouseover'ed and selected, the aura was drawn
twice).
- Modified Stand stance to allow retaliation on attacks (normally Stand
will attack any enemy in LOS, but this is useful if a neutral unit is in
LOS).
- Modified pathfinder to not take into account terrain slope, which is
an expensive calculation - we'll eventually take into account terrain
type instead.

This was SVN commit r4527.
2006-10-08 17:39:46 +00:00

415 lines
12 KiB
C++

#include "precompiled.h"
#include <vector>
#include "EntityFormation.h"
#include "EntityManager.h"
#include "LOSManager.h"
#include "Projectile.h"
#include "Scheduler.h"
#include "Simulation.h"
#include "TurnManager.h"
#include "graphics/Model.h"
#include "graphics/Terrain.h"
#include "graphics/Unit.h"
#include "graphics/UnitManager.h"
#include "lib/timer.h"
#include "ps/CLogger.h"
#include "ps/Game.h"
#include "ps/GameAttributes.h"
#include "ps/Loader.h"
#include "ps/LoaderThunks.h"
#include "network/NetMessage.h"
#include "ps/Profile.h"
#include "renderer/Renderer.h"
#include "renderer/WaterManager.h"
#include "simulation/Entity.h"
#include "simulation/LOSManager.h"
#include "simulation/TerritoryManager.h"
#include "simulation/EntityTemplateCollection.h"
#include "gui/CGUI.h"
CSimulation::CSimulation(CGame *pGame):
m_pGame(pGame),
m_pWorld(pGame->GetWorld()),
m_pTurnManager((g_SinglePlayerTurnManager=new CSinglePlayerTurnManager())),
m_DeltaTime(0)
{
}
CSimulation::~CSimulation()
{
delete g_SinglePlayerTurnManager;
g_SinglePlayerTurnManager=NULL;
}
int CSimulation::Initialize(CGameAttributes* pAttribs)
{
m_Random.seed(0); // TODO: Store a random seed in CGameAttributes and synchronize it accross the network
m_pTurnManager->Initialize(m_pGame->GetNumPlayers());
// Call the game startup script
// TODO: Maybe don't do this if we're in Atlas
// [2006-06-26 20ms]
g_ScriptingHost.RunScript( "scripts/game_startup.js" );
// [2006-06-26 3647ms]
g_EntityManager.m_screenshotMode = pAttribs->m_ScreenshotMode;
g_EntityManager.InitializeAll();
// [2006-06-26: 61ms]
m_pWorld->GetLOSManager()->Initialize(pAttribs->m_LOSSetting, pAttribs->m_FogOfWar);
m_pWorld->GetTerritoryManager()->Initialize();
return 0;
}
void CSimulation::RegisterInit(CGameAttributes *pAttribs)
{
RegMemFun1(this, &CSimulation::Initialize, pAttribs, L"CSimulation", 3900);
}
void CSimulation::Update(double frameTime)
{
m_DeltaTime += frameTime;
if( m_DeltaTime >= 0.0 && frameTime )
{
PROFILE( "simulation turn" );
// A new simulation frame is required.
MICROLOG( L"calculate simulation" );
Simulate();
m_DeltaTime -= (m_pTurnManager->GetTurnLength()/1000.0);
if( m_DeltaTime >= 0.0 )
{
// The desired sim frame rate can't be achieved. Settle for process & render
// frames as fast as possible.
frameTime -= m_DeltaTime; // so the animation stays in sync with the sim
m_DeltaTime = 0.0;
}
}
PROFILE_START( "simulation interpolation" );
Interpolate(frameTime, ((1000.0*m_DeltaTime) / (float)m_pTurnManager->GetTurnLength()) + 1.0);
PROFILE_END( "simulation interpolation" );
}
void CSimulation::Interpolate(double frameTime, double offset)
{
const std::vector<CUnit*>& units=m_pWorld->GetUnitManager()->GetUnits();
for (uint i=0;i<units.size();++i)
units[i]->GetModel()->Update((float)frameTime);
g_EntityManager.interpolateAll( (float)offset );
g_ProjectileManager.InterpolateAll( (float)offset );
g_Renderer.GetWaterManager()->m_WaterTexTimer += frameTime;
}
void CSimulation::Simulate()
{
PROFILE_START( "scheduler tick" );
g_Scheduler.update(m_pTurnManager->GetTurnLength());
PROFILE_END( "scheduler tick" );
PROFILE_START( "entity updates" );
g_EntityManager.updateAll( m_pTurnManager->GetTurnLength() );
PROFILE_END( "entity updates" );
PROFILE_START( "projectile updates" );
g_ProjectileManager.UpdateAll( m_pTurnManager->GetTurnLength() );
PROFILE_END( "projectile updates" );
PROFILE_START( "los update" );
m_pWorld->GetLOSManager()->Update();
PROFILE_END( "los update" );
PROFILE_START( "turn manager update" );
m_pTurnManager->NewTurn();
m_pTurnManager->IterateBatch(0, TranslateMessage, this);
PROFILE_END( "turn manager update" );
}
// Location randomizer, for group orders...
// Having the group turn up at the destination with /some/ sort of cohesion is
// good but tasking them all to the exact same point will leave them brawling
// for it at the other end (it shouldn't, but the PASAP pathfinder is too
// simplistic)
// Task them all to a point within a radius of the target, radius depends upon
// the number of units in the group.
void RandomizeLocations(CEntityOrder order, const std::vector<HEntity> &entities, bool isQueued)
{
std::vector<HEntity>::const_iterator it;
float radius = 2.0f * sqrt( (float)entities.size() - 1 );
for (it = entities.begin(); it < entities.end(); it++)
{
float _x, _y;
CEntityOrder randomizedOrder = order;
CSimulation* sim = g_Game->GetSimulation();
do
{
_x = sim->RandFloat() * 2.0f - 1.0f;
_y = sim->RandFloat() * 2.0f - 1.0f;
}
while( ( _x * _x ) + ( _y * _y ) > 1.0f );
randomizedOrder.m_data[0].location.x += _x * radius;
randomizedOrder.m_data[0].location.y += _y * radius;
// Clamp it to within the map, just in case.
float mapsize = (float)g_Game->GetWorld()->GetTerrain()->GetVerticesPerSide() * CELL_SIZE;
if( randomizedOrder.m_data[0].location.x < 0.0f )
randomizedOrder.m_data[0].location.x = 0.0f;
if( randomizedOrder.m_data[0].location.x >= mapsize )
randomizedOrder.m_data[0].location.x = mapsize;
if( randomizedOrder.m_data[0].location.y < 0.0f )
randomizedOrder.m_data[0].location.y = 0.0f;
if( randomizedOrder.m_data[0].location.y >= mapsize )
randomizedOrder.m_data[0].location.y = mapsize;
if( !isQueued )
(*it)->clearOrders();
(*it)->pushOrder( randomizedOrder );
}
}
void FormationLocations(CEntityOrder order, const std::vector<HEntity> &entities, bool isQueued)
{
CVector2D upvec(0.0f, 1.0f);
std::vector<HEntity>::const_iterator it = entities.begin();
CEntityFormation* formation = (*it)->GetFormation();
for (; it != entities.end(); it++)
{
CEntityOrder orderCopy = order;
CVector2D posDelta = orderCopy.m_data[0].location - formation->GetPosition();
CVector2D formDelta = formation->GetSlotPosition( (*it)->m_formationSlot );
posDelta = posDelta.normalize();
//Rotate the slot position's offset vector according to the rotation of posDelta.
CVector2D rotDelta;
float deltaCos = posDelta.dot(upvec);
float deltaSin = sinf( acosf(deltaCos) );
rotDelta.x = formDelta.x * deltaCos - formDelta.y * deltaSin;
rotDelta.y = formDelta.x * deltaSin + formDelta.y * deltaCos;
orderCopy.m_data[0].location += rotDelta;
// Clamp it to within the map, just in case.
float mapsize = (float)g_Game->GetWorld()->GetTerrain()->GetVerticesPerSide() * CELL_SIZE;
if( orderCopy.m_data[0].location.x < 0.0f )
orderCopy.m_data[0].location.x = 0.0f;
if( orderCopy.m_data[0].location.x >= mapsize )
orderCopy.m_data[0].location.x = mapsize;
if( orderCopy.m_data[0].location.y < 0.0f )
orderCopy.m_data[0].location.y = 0.0f;
if( orderCopy.m_data[0].location.y >= mapsize )
orderCopy.m_data[0].location.y = mapsize;
if( !isQueued )
(*it)->clearOrders();
(*it)->pushOrder( orderCopy );
}
}
void QueueOrder(CEntityOrder order, const std::vector<HEntity> &entities, bool isQueued)
{
std::vector<HEntity>::const_iterator it;
for (it = entities.begin(); it < entities.end(); it++)
{
if( !isQueued )
(*it)->clearOrders();
(*it)->pushOrder( order );
}
}
uint CSimulation::TranslateMessage(CNetMessage* pMsg, uint clientMask, void* UNUSED(userdata))
{
CEntityOrder order;
bool isQueued = true;
#define ENTITY_POSITION(_msg, _order) do\
{ \
_msg *msg=(_msg *)pMsg; \
isQueued = msg->m_IsQueued != 0; \
order.m_type=CEntityOrder::_order; \
order.m_data[0].location.x=(float)msg->m_TargetX; \
order.m_data[0].location.y=(float)msg->m_TargetY; \
RandomizeLocations(order, msg->m_Entities, isQueued); \
} while(0)
#define ENTITY_POSITION_FORM(_msg, _order) do\
{ \
_msg *msg=(_msg *)pMsg; \
isQueued = msg->m_IsQueued != 0; \
order.m_type=CEntityOrder::_order; \
order.m_data[0].location.x=(float)msg->m_TargetX; \
order.m_data[0].location.y=(float)msg->m_TargetY; \
FormationLocations(order, msg->m_Entities, isQueued); \
} while(0)
#define ENTITY_ENTITY(_msg, _order) do\
{ \
_msg *msg=(_msg *)pMsg; \
isQueued = msg->m_IsQueued != 0; \
order.m_type=CEntityOrder::_order; \
order.m_data[0].entity=msg->m_Target; \
QueueOrder(order, msg->m_Entities, isQueued); \
} while(0)
#define ENTITY_ENTITY_INT(_msg, _order) do\
{ \
_msg *msg=(_msg *)pMsg; \
isQueued = msg->m_IsQueued != 0; \
order.m_type=CEntityOrder::_order; \
order.m_data[0].entity=msg->m_Target; \
order.m_data[1].data=msg->m_Action; \
QueueOrder(order, msg->m_Entities, isQueued); \
} while(0)
#define ENTITY_INT_STRING(_msg, _order) do\
{ \
_msg *msg=(_msg *)pMsg; \
isQueued = msg->m_IsQueued != 0; \
order.m_type=CEntityOrder::_order; \
order.m_data[0].string=msg->m_Name; \
order.m_data[1].data=msg->m_Type; \
QueueOrder(order, msg->m_Entities, isQueued); \
} while(0)
switch (pMsg->GetType())
{
case NMT_AddWaypoint:
{
CAddWaypoint *msg=(CAddWaypoint *)pMsg;
isQueued = msg->m_IsQueued != 0;
order.m_type=CEntityOrder::ORDER_LAST;
order.m_data[0].location.x=(float)msg->m_TargetX;
order.m_data[0].location.y=(float)msg->m_TargetY;
std::vector<HEntity>::iterator it = msg->m_Entities.begin();
for (;it != msg->m_Entities.end(); ++it)
{
std::deque<CEntityOrder>::const_iterator ord_it;
ord_it=(*it)->m_orderQueue.end() - 1;
for (;ord_it >= (*it)->m_orderQueue.begin();--ord_it)
{
if (ord_it->m_type == CEntityOrder::ORDER_PATH_END_MARKER)
{
order.m_type = CEntityOrder::ORDER_GOTO;
(*it)->pushOrder(order);
break;
}
if (ord_it->m_type == CEntityOrder::ORDER_PATROL)
{
order.m_type = ord_it->m_type;
(*it)->pushOrder(order);
break;
}
}
if (order.m_type == CEntityOrder::ORDER_LAST)
{
LOG(ERROR, "simulation", "Got an AddWaypoint message for an entity that isn't moving.");
}
}
break;
}
case NMT_Goto:
ENTITY_POSITION(CGoto, ORDER_GOTO);
break;
case NMT_FormationGoto:
ENTITY_POSITION_FORM(CFormationGoto, ORDER_GOTO);
break;
//TODO: make formation move to within range of target and then attack normally
case NMT_FormationGeneric:
ENTITY_ENTITY_INT(CFormationGeneric, ORDER_GENERIC);
break;
case NMT_Run:
ENTITY_POSITION(CRun, ORDER_RUN);
break;
case NMT_Patrol:
ENTITY_POSITION(CPatrol, ORDER_PATROL);
break;
case NMT_Generic:
ENTITY_ENTITY_INT(CGeneric, ORDER_GENERIC);
break;
case NMT_Produce:
ENTITY_INT_STRING(CProduce, ORDER_PRODUCE);
break;
case NMT_NotifyRequest:
ENTITY_ENTITY_INT(CNotifyRequest, ORDER_NOTIFY_REQUEST);
break;
case NMT_PlaceObject:
{
CPlaceObject *msg = (CPlaceObject *) pMsg;
isQueued = msg->m_IsQueued != 0;
// Figure out the player
CPlayer* player = 0;
if(msg->m_Entities.size() > 0)
player = msg->m_Entities[0]->GetPlayer();
else
player = g_Game->GetLocalPlayer();
// Create the object
CVector3D pos(msg->m_X/1000.0f, msg->m_Y/1000.0f, msg->m_Z/1000.0f);
HEntity newObj = g_EntityManager.createFoundation( msg->m_Template, player, pos, msg->m_Angle/1000.0f );
newObj->m_actor->SetPlayerID(player->GetPlayerID());
if( newObj->Initialize() )
{
// Order all the selected units to work on the new object using the given action
order.m_type = CEntityOrder::ORDER_START_CONSTRUCTION;
order.m_data[0].entity = newObj;
QueueOrder(order, msg->m_Entities, isQueued);
}
} while(0)
break;
}
return clientMask;
}
uint CSimulation::GetMessageMask(CNetMessage* UNUSED(pMsg), uint UNUSED(oldMask), void* UNUSED(userdata))
{
//CSimulation *pSimulation=(CSimulation *)userdata;
// Pending a complete visibility/minimal-update implementation, we'll
// simply select the first 32 connected clients ;-)
return 0xffffffff;
}
void CSimulation::QueueLocalCommand(CNetMessage *pMsg)
{
m_pTurnManager->QueueLocalCommand(pMsg);
}
// Get a random integer between 0 and maxVal-1 from the simulation's random number generator
int CSimulation::RandInt(int maxVal)
{
boost::uniform_smallint<int> distr(0, maxVal-1);
return distr(m_Random);
}
// Get a random float in [0, 1) from the simulation's random number generator
float CSimulation::RandFloat()
{
// Cannot use uniform_01 here because it is not a real distribution, but rather an
// utility class that makes a copy of the generator, and therefore it would repeatedly
// return the same values because it never modifies our copy of the generator.
boost::uniform_real<float> distr(0.0f, 1.0f);
return distr(m_Random);
}