1
0
forked from 0ad/0ad
0ad/source/graphics/Frustum.cpp
Ykkrosh b1b96a89d6 Fix culling for shadows and reflections.
Previously we had a single culling frustum based on the main camera, and
any object outside the frustum would never get rendered, even if it
should actually contribute to shadows or reflections/refractions. This
caused ugly pop-in effects in the shadows and reflections while
scrolling.

Extend the renderer to support multiple cull groups, each with a
separate frustum and with separate lists of submitted objects, so that
shadows and reflections will render the correctly culled sets of
objects.

Update the shadow map generation to compute the (hopefully) correct
bounds and matrices for this new scheme.

Include terrain patches in the shadow bounds, so hills can cast shadows
correctly.

Remove the code that tried to render objects slightly outside the camera
frustum in order to reduce the pop-in effect, since that was a
workaround for the lack of a proper fix.

Remove the model/patch filtering code, which was used to cull objects
that were in the normal camera frustum but should be excluded from
reflections/refractions, since that's redundant now too.

Inline DistanceToPlane to save a few hundred usecs per frame inside
CCmpUnitRenderer::RenderSubmit.

Fixes #504, #579.

This was SVN commit r15445.
2014-06-25 01:11:10 +00:00

198 lines
4.3 KiB
C++

/* Copyright (C) 2009 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* CFrustum is a collection of planes which define a viewing space.
*/
/*
Usually associated with the camera, there are 6 planes which define the
view pyramid. But we allow more planes per frustum which may be used for
portal rendering, where a portal may have 3 or more edges.
*/
#include "precompiled.h"
#include "Frustum.h"
#include "maths/BoundingBoxAligned.h"
#include "maths/MathUtil.h"
#include "maths/Matrix3D.h"
CFrustum::CFrustum ()
{
m_NumPlanes = 0;
}
CFrustum::~CFrustum ()
{
}
void CFrustum::SetNumPlanes (size_t num)
{
m_NumPlanes = num;
//clip it
if (m_NumPlanes >= MAX_NUM_FRUSTUM_PLANES)
{
debug_warn(L"CFrustum::SetNumPlanes: Too many planes");
m_NumPlanes = MAX_NUM_FRUSTUM_PLANES-1;
}
}
void CFrustum::AddPlane (const CPlane& plane)
{
if (m_NumPlanes >= MAX_NUM_FRUSTUM_PLANES)
{
debug_warn(L"CFrustum::AddPlane: Too many planes");
return;
}
m_aPlanes[m_NumPlanes++] = plane;
}
void CFrustum::Transform(CMatrix3D& m)
{
for (size_t i = 0; i < m_NumPlanes; i++)
{
CVector3D n = m.Rotate(m_aPlanes[i].m_Norm);
CVector3D p = m.Transform(m_aPlanes[i].m_Norm * -m_aPlanes[i].m_Dist);
m_aPlanes[i].Set(n, p);
m_aPlanes[i].Normalize();
}
}
bool CFrustum::IsPointVisible (const CVector3D &point) const
{
PLANESIDE Side;
for (size_t i=0; i<m_NumPlanes; i++)
{
Side = m_aPlanes[i].ClassifyPoint (point);
if (Side == PS_BACK)
return false;
}
return true;
}
bool CFrustum::DoesSegmentIntersect(const CVector3D& startRef, const CVector3D &endRef)
{
CVector3D start = startRef;
CVector3D end = endRef;
if(IsPointVisible(start) || IsPointVisible(end))
return true;
CVector3D intersect;
for ( size_t i = 0; i<m_NumPlanes; ++i )
{
if ( m_aPlanes[i].FindLineSegIntersection(start, end, &intersect) )
{
if ( IsPointVisible( intersect ) )
return true;
}
}
return false;
}
bool CFrustum::IsSphereVisible (const CVector3D &center, float radius) const
{
for (size_t i = 0; i < m_NumPlanes; i++)
{
float Dist = m_aPlanes[i].DistanceToPlane(center);
// If none of the sphere is in front of the plane, then
// it is outside the frustum
if (-Dist > radius)
return false;
}
return true;
}
bool CFrustum::IsBoxVisible (const CVector3D &position,const CBoundingBoxAligned &bounds) const
{
//basically for every plane we calculate the furthest point
//in the box to that plane. If that point is beyond the plane
//then the box is not visible
CVector3D FarPoint;
PLANESIDE Side;
CVector3D Min = position+bounds[0];
CVector3D Max = position+bounds[1];
for (size_t i=0; i<m_NumPlanes; i++)
{
if (m_aPlanes[i].m_Norm.X > 0.0f)
{
if (m_aPlanes[i].m_Norm.Y > 0.0f)
{
if (m_aPlanes[i].m_Norm.Z > 0.0f)
{
FarPoint.X = Max.X; FarPoint.Y = Max.Y; FarPoint.Z = Max.Z;
}
else
{
FarPoint.X = Max.X; FarPoint.Y = Max.Y; FarPoint.Z = Min.Z;
}
}
else
{
if (m_aPlanes[i].m_Norm.Z > 0.0f)
{
FarPoint.X = Max.X; FarPoint.Y = Min.Y; FarPoint.Z = Max.Z;
}
else
{
FarPoint.X = Max.X; FarPoint.Y = Min.Y; FarPoint.Z = Min.Z;
}
}
}
else
{
if (m_aPlanes[i].m_Norm.Y > 0.0f)
{
if (m_aPlanes[i].m_Norm.Z > 0.0f)
{
FarPoint.X = Min.X; FarPoint.Y = Max.Y; FarPoint.Z = Max.Z;
}
else
{
FarPoint.X = Min.X; FarPoint.Y = Max.Y; FarPoint.Z = Min.Z;
}
}
else
{
if (m_aPlanes[i].m_Norm.Z > 0.0f)
{
FarPoint.X = Min.X; FarPoint.Y = Min.Y; FarPoint.Z = Max.Z;
}
else
{
FarPoint.X = Min.X; FarPoint.Y = Min.Y; FarPoint.Z = Min.Z;
}
}
}
Side = m_aPlanes[i].ClassifyPoint (FarPoint);
if (Side == PS_BACK)
return false;
}
return true;
}