1
0
forked from 0ad/0ad
0ad/source/lib/cache_adt.h

754 lines
21 KiB
C++

/* Copyright (c) 2010 Wildfire Games
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Customizable cache data structure.
*/
#ifndef INCLUDED_CACHE_ADT
#define INCLUDED_CACHE_ADT
#include <cfloat>
#include <list>
#include <map>
#include <queue> // std::priority_queue
#if CONFIG_ENABLE_BOOST
# include <boost/unordered_map.hpp>
# define MAP boost::unordered_map
#else
# define MAP STL_HASH_MAP
#endif
/*
Cache for items of variable size and value/"cost".
underlying displacement algorithm is pluggable; default is "Landlord".
template reference:
Entry provides size, cost, credit and credit_density().
rationale:
- made a template instead of exposing Cache::Entry because
that would drag a lot of stuff out of Cache.
- calculates its own density since that entails a Divider functor,
which requires storage inside Entry.
Entries is a collection with iterator and begin()/end() and
"static Entry& entry_from_it(iterator)".
rationale:
- STL map has pair<key, item> as its value_type, so this
function would return it->second. however, we want to support
other container types (where we'd just return *it).
Manager is a template parameterized on typename Key and class Entry.
its interface is as follows:
// is the cache empty?
bool empty() const;
// add (key, entry) to cache.
void add(const Key& key, const Entry& entry);
// if the entry identified by <key> is not in cache, return false;
// otherwise return true and pass back a pointer to it.
bool find(const Key& key, const Entry** pentry) const;
// remove an entry from cache, which is assumed to exist!
// this makes sense because callers will typically first use find() to
// return info about the entry; this also checks if present.
void remove(const Key& key);
// mark <entry> as just accessed for purpose of cache management.
// it will tend to be kept in cache longer.
void on_access(Entry& entry);
// caller's intent is to remove the least valuable entry.
// in implementing this, you have the latitude to "shake loose"
// several entries (e.g. because their 'value' is equal).
// they must all be push_back-ed into the list; Cache will dole
// them out one at a time in FIFO order to callers.
//
// rationale:
// - it is necessary for callers to receive a copy of the
// Entry being evicted - e.g. file_cache owns its items and
// they must be passed back to allocator when evicted.
// - e.g. Landlord can potentially see several entries become
// evictable in one call to remove_least_valuable. there are
// several ways to deal with this:
// 1) generator interface: we return one of { empty, nevermind,
// removed, remove-and-call-again }. this greatly complicates
// the call site.
// 2) return immediately after finding an item to evict.
// this changes cache behavior - entries stored at the
// beginning would be charged more often (unfair).
// resuming charging at the next entry doesn't work - this
// would have to be flushed when adding, at which time there
// is no provision for returning any items that may be evicted.
// 3) return list of all entries "shaken loose". this incurs
// frequent mem allocs, which can be alleviated via suballocator.
// note: an intrusive linked-list doesn't make sense because
// entries to be returned need to be copied anyway (they are
// removed from the manager's storage).
void remove_least_valuable(std::list<Entry>& entry_list)
*/
//
// functors to calculate minimum credit density (MCD)
//
// MCD is required for the Landlord algorithm's evict logic.
// [Young02] calls it '\delta'.
// scan over all entries and return MCD.
template<class Entries> float ll_calc_min_credit_density(const Entries& entries)
{
float min_credit_density = FLT_MAX;
for(typename Entries::const_iterator it = entries.begin(); it != entries.end(); ++it)
{
const float credit_density = Entries::entry_from_it(it).credit_density();
min_credit_density = std::min(min_credit_density, credit_density);
}
return min_credit_density;
}
// note: no warning is given that the MCD entry is being removed!
// (reduces overhead in remove_least_valuable)
// these functors must account for that themselves (e.g. by resetting
// their state directly after returning MCD).
// determine MCD by scanning over all entries.
// tradeoff: O(N) time complexity, but all notify* calls are no-ops.
template<class Entry, class Entries>
class McdCalc_Naive
{
public:
void notify_added(const Entry&) const {}
void notify_decreased(const Entry&) const {}
void notify_impending_increase_or_remove(const Entry&) const {}
void notify_increased_or_removed(const Entry&) const {}
float operator()(const Entries& entries) const
{
const float mcd = ll_calc_min_credit_density(entries);
return mcd;
}
};
// cache previous MCD and update it incrementally (when possible).
// tradeoff: amortized O(1) time complexity, but notify* calls must
// perform work whenever something in the cache changes.
template<class Entry, class Entries>
class McdCalc_Cached
{
public:
McdCalc_Cached() : min_credit_density(FLT_MAX), min_valid(false) {}
void notify_added(const Entry& entry)
{
// when adding a new item, the minimum credit density can only
// decrease or remain the same; acting as if entry's credit had
// been decreased covers both cases.
notify_decreased(entry);
}
void notify_decreased(const Entry& entry)
{
min_credit_density = std::min(min_credit_density, entry.credit_density());
}
void notify_impending_increase_or_remove(const Entry& entry)
{
// remember if this entry had the smallest density
is_min_entry = feq(min_credit_density, entry.credit_density());
}
void notify_increased_or_removed(const Entry& UNUSED(entry))
{
// .. it did and was increased or removed. we must invalidate
// MCD and recalculate it next time.
if(is_min_entry)
{
min_valid = false;
min_credit_density = -1.0f;
}
}
float operator()(const Entries& entries)
{
if(min_valid)
{
// the entry that has MCD will be removed anyway by caller;
// we need to invalidate here because they don't call
// notify_increased_or_removed.
min_valid = false;
return min_credit_density;
}
// this is somewhat counterintuitive. since we're calculating
// MCD directly, why not mark our cached version of it valid
// afterwards? reason is that our caller will remove the entry with
// MCD, so it'll be invalidated anyway.
// instead, our intent is to calculate MCD for the *next time*.
const float ret = ll_calc_min_credit_density(entries);
min_valid = true;
min_credit_density = FLT_MAX;
return ret;
}
private:
float min_credit_density;
bool min_valid;
// temporary flag set by notify_impending_increase_or_remove
bool is_min_entry;
};
//
// Landlord cache management policy: see [Young02].
//
// in short, each entry has credit initially set to cost. when wanting to
// remove an item, all are charged according to MCD and their size;
// entries are evicted if their credit is exhausted. accessing an entry
// restores "some" of its credit.
template<typename Key, typename Entry, template<class Entry_, class Entries> class McdCalc = McdCalc_Cached>
class Landlord
{
public:
bool empty() const
{
return map.empty();
}
void add(const Key& key, const Entry& entry)
{
// adapter for add_ (which returns an iterator)
(void)add_(key, entry);
}
bool find(const Key& key, const Entry** pentry) const
{
MapCIt it = map.find(key);
if(it == map.end())
return false;
*pentry = &it->second;
return true;
}
void remove(const Key& key)
{
MapIt it = map.find(key);
// note: don't complain if not in the cache: this happens after
// writing a file and invalidating its cache entry, which may
// or may not exist.
if(it != map.end())
remove_(it);
}
void on_access(Entry& entry)
{
mcd_calc.notify_impending_increase_or_remove(entry);
// Landlord algorithm calls for credit to be reset to anything
// between its current value and the cost.
const float gain = 0.75f; // restore most credit
entry.credit = gain*entry.cost + (1.0f-gain)*entry.credit;
mcd_calc.notify_increased_or_removed(entry);
}
void remove_least_valuable(std::list<Entry>& entry_list)
{
// we are required to evict at least one entry. one iteration
// ought to suffice, due to definition of min_credit_density and
// tolerance; however, we provide for repeating if necessary.
again:
// messing with this (e.g. raising if tiny) would result in
// different evictions than Landlord_Lazy, which is unacceptable.
// nor is doing so necessary: if mcd is tiny, so is credit.
const float min_credit_density = mcd_calc(map);
debug_assert(min_credit_density > 0.0f);
for(MapIt it = map.begin(); it != map.end();) // no ++it
{
Entry& entry = it->second;
charge(entry, min_credit_density);
if(should_evict(entry))
{
entry_list.push_back(entry);
// annoying: we have to increment <it> before erasing
MapIt it_to_remove = it++;
map.erase(it_to_remove);
}
else
{
mcd_calc.notify_decreased(entry);
++it;
}
}
if(entry_list.empty())
goto again;
}
protected:
class Map : public MAP<Key, Entry>
{
public:
static Entry& entry_from_it(typename Map::iterator it) { return it->second; }
static const Entry& entry_from_it(typename Map::const_iterator it) { return it->second; }
};
typedef typename Map::iterator MapIt;
typedef typename Map::const_iterator MapCIt;
Map map;
// add entry and return iterator pointing to it.
MapIt add_(const Key& key, const Entry& entry)
{
typedef std::pair<MapIt, bool> PairIB;
typename Map::value_type val = std::make_pair(key, entry);
PairIB ret = map.insert(val);
debug_assert(ret.second); // must not already be in map
mcd_calc.notify_added(entry);
return ret.first;
}
// remove entry (given by iterator) directly.
void remove_(MapIt it)
{
const Entry& entry = it->second;
mcd_calc.notify_impending_increase_or_remove(entry);
mcd_calc.notify_increased_or_removed(entry);
map.erase(it);
}
void charge(Entry& entry, float delta)
{
entry.credit -= delta * entry.size;
// don't worry about entry.size being 0 - if so, cost
// should also be 0, so credit will already be 0 anyway.
}
// for each entry, 'charge' it (i.e. reduce credit by) delta * its size.
// delta is typically MCD (see above); however, several such updates
// may be lumped together to save time. Landlord_Lazy does this.
void charge_all(float delta)
{
for(MapIt it = map.begin(); it != map.end(); ++it)
{
Entry& entry = it->second;
entry.credit -= delta * entry.size;
if(!should_evict(entry))
mcd_calc.notify_decreased(entry);
}
}
// is entry's credit exhausted? if so, it should be evicted.
bool should_evict(const Entry& entry)
{
// we need a bit of leeway because density calculations may not
// be exact. choose value carefully: must not be high enough to
// trigger false positives.
return entry.credit < 0.0001f;
}
private:
McdCalc<Entry, Map> mcd_calc;
};
// Cache manger policies. (these are partial specializations of Landlord,
// adapting it to the template params required by Cache)
template<class Key, class Entry> class Landlord_Naive : public Landlord<Key, Entry, McdCalc_Naive> {};
template<class Key, class Entry> class Landlord_Cached: public Landlord<Key, Entry, McdCalc_Cached> {};
// variant of Landlord that adds a priority queue to directly determine
// which entry to evict. this allows lumping several charge operations
// together and thus reduces iteration over all entries.
// tradeoff: O(logN) removal (instead of N), but additional O(N) storage.
template<typename Key, class Entry>
class Landlord_Lazy : public Landlord_Naive<Key, Entry>
{
typedef typename Landlord_Naive<Key, Entry>::Map Map;
typedef typename Landlord_Naive<Key, Entry>::MapIt MapIt;
typedef typename Landlord_Naive<Key, Entry>::MapCIt MapCIt;
public:
Landlord_Lazy() { pending_delta = 0.0f; }
void add(const Key& key, const Entry& entry)
{
// we must apply pending_delta now - otherwise, the existing delta
// would later be applied to this newly added item (incorrect).
commit_pending_delta();
MapIt it = Parent::add_(key, entry);
pri_q.push(it);
}
void remove(const Key& key)
{
Parent::remove(key);
// reconstruct pri_q from current map. this is slow (N*logN) and
// could definitely be done better, but we don't bother since
// remove is a very rare operation (e.g. invalidating entries).
while(!pri_q.empty())
pri_q.pop();
for(MapCIt it = this->map.begin(); it != this->map.end(); ++it)
pri_q.push(it);
}
void on_access(Entry& entry)
{
Parent::on_access(entry);
// entry's credit was changed. we now need to reshuffle the
// pri queue to reflect this.
pri_q.ensure_heap_order();
}
void remove_least_valuable(std::list<Entry>& entry_list)
{
MapIt least_valuable_it = pri_q.top(); pri_q.pop();
Entry& entry = Map::entry_from_it(least_valuable_it);
entry_list.push_back(entry);
// add to pending_delta the MCD that would have resulted
// if removing least_valuable_it normally.
// first, calculate actual credit (i.e. apply pending_delta to
// this entry); then add the resulting density to pending_delta.
entry.credit -= pending_delta*entry.size;
const float credit_density = entry.credit_density();
debug_assert(credit_density > 0.0f);
pending_delta += credit_density;
Parent::remove_(least_valuable_it);
}
private:
typedef Landlord_Naive<Key, Entry> Parent;
// sort iterators by credit_density of the Entry they reference.
struct CD_greater
{
bool operator()(MapIt it1, MapIt it2) const
{
return Map::entry_from_it(it1).credit_density() >
Map::entry_from_it(it2).credit_density();
}
};
// wrapper on top of priority_queue that allows 'heap re-sift'
// (see on_access).
// notes:
// - greater comparator makes pri_q.top() the one with
// LEAST credit_density, which is what we want.
// - deriving from an STL container is a bit dirty, but we need this
// to get at the underlying data (priority_queue interface is not
// very capable).
class PriQ: public std::priority_queue<MapIt, std::vector<MapIt>, CD_greater>
{
public:
void ensure_heap_order()
{
// TODO: this is actually N*logN - ouch! that explains high
// CPU cost in profile. this is called after only 1 item has
// changed, so a logN "sift" operation ought to suffice.
// that's not supported by the STL heap functions, so we'd
// need a better implementation. pending..
std::make_heap(this->c.begin(), this->c.end(), this->comp);
}
};
PriQ pri_q;
// delta values that have accumulated over several
// remove_least_valuable() calls. applied during add().
float pending_delta;
void commit_pending_delta()
{
if(pending_delta > 0.0f)
{
this->charge_all(pending_delta);
pending_delta = 0.0f;
// we've changed entry credit, so the heap order *may* have been
// violated; reorder the pri queue. (I don't think so,
// due to definition of delta, but we'll play it safe)
pri_q.ensure_heap_order();
}
}
};
//
// functor that implements division of first arg by second
//
// this is used to calculate credit_density(); performance matters
// because this is called for each entry during each remove operation.
// floating-point division (fairly slow)
class Divider_Naive
{
public:
Divider_Naive() {} // needed for default CacheEntry ctor
Divider_Naive(float UNUSED(x)) {}
float operator()(float val, float divisor) const
{
return val / divisor;
}
};
// caches reciprocal of divisor and multiplies by that.
// tradeoff: only 4 clocks (instead of 20), but 4 bytes extra per entry.
class Divider_Recip
{
float recip;
public:
Divider_Recip() {} // needed for default CacheEntry ctor
Divider_Recip(float x) { recip = 1.0f / x; }
float operator()(float val, float UNUSED(divisor)) const
{
return val * recip;
}
};
// TODO: use SSE/3DNow RCP instruction? not yet, because not all systems
// support it and overhead of detecting this support eats into any gains.
// initial implementation for testing purposes; quite inefficient.
template<typename Key, typename Entry>
class LRU
{
public:
bool empty() const
{
return lru.empty();
}
void add(const Key& key, const Entry& entry)
{
lru.push_back(KeyAndEntry(key, entry));
}
bool find(const Key& key, const Entry** pentry) const
{
CIt it = std::find_if(lru.begin(), lru.end(), KeyEq(key));
if(it == lru.end())
return false;
*pentry = &it->entry;
return true;
}
void remove(const Key& key)
{
std::remove_if(lru.begin(), lru.end(), KeyEq(key));
}
void on_access(Entry& entry)
{
for(It it = lru.begin(); it != lru.end(); ++it)
{
if(&entry == &it->entry)
{
add(it->key, it->entry);
lru.erase(it);
return;
}
}
debug_assert(0); // entry not found in list
}
void remove_least_valuable(std::list<Entry>& entry_list)
{
entry_list.push_back(lru.front().entry);
lru.pop_front();
}
private:
struct KeyAndEntry
{
Key key;
Entry entry;
KeyAndEntry(const Key& key_, const Entry& entry_)
: key(key_), entry(entry_) {}
};
class KeyEq
{
Key key;
public:
KeyEq(const Key& key_) : key(key_) {}
bool operator()(const KeyAndEntry& ke) const
{
return ke.key == key;
}
};
typedef std::list<KeyAndEntry> List;
typedef typename List::iterator It;
typedef typename List::const_iterator CIt;
List lru;
};
// this is applicable to all cache management policies and stores all
// required information. a Divider functor is used to implement
// division for credit_density.
template<class Item, class Divider> struct CacheEntry
{
Item item;
size_t size;
size_t cost;
float credit;
Divider divider;
// needed for mgr.remove_least_valuable's entry_copy
CacheEntry()
{
}
CacheEntry(const Item& item_, size_t size_, size_t cost_)
: item(item_), divider((float)size_)
{
size = size_;
cost = cost_;
credit = (float)cost;
// else divider will fail
debug_assert(size != 0);
}
float credit_density() const
{
return divider(credit, (float)size);
}
};
//
// Cache
//
template
<
typename Key, typename Item,
// see documentation above for Manager's interface.
template<typename Key_, class Entry> class Manager = Landlord_Cached,
class Divider = Divider_Naive
>
class Cache
{
public:
Cache() : mgr() {}
void add(const Key& key, const Item& item, size_t size, size_t cost)
{
return mgr.add(key, Entry(item, size, cost));
}
// remove the entry identified by <key>. expected usage is to check
// if present and determine size via retrieve(), so no need for
// error checking.
// useful for invalidating single cache entries.
void remove(const Key& key)
{
mgr.remove(key);
}
// if there is no entry for <key> in the cache, return false.
// otherwise, return true and pass back item and (optionally) size.
//
// if refill_credit (default), the cache manager 'rewards' this entry,
// tending to keep it in cache longer. this parameter is not used in
// normal operation - it's only for special cases where we need to
// make an end run around the cache accounting (e.g. for cache simulator).
bool retrieve(const Key& key, Item& item, size_t* psize = 0, bool refill_credit = true)
{
const Entry* entry;
if(!mgr.find(key, &entry))
return false;
item = entry->item;
if(psize)
*psize = entry->size;
if(refill_credit)
mgr.on_access((Entry&)*entry);
return true;
}
bool peek(const Key& key, Item& item, size_t* psize = 0)
{
return retrieve(key, item, psize, false);
}
// toss out the least valuable entry. return false if cache is empty,
// otherwise true and (optionally) pass back its item and size.
bool remove_least_valuable(Item* pItem = 0, size_t* pSize = 0)
{
// as an artefact of the cache eviction policy, several entries
// may be "shaken loose" by one call to remove_least_valuable.
// we cache them in a list to disburden callers (they always get
// exactly one).
if(entries_awaiting_eviction.empty())
{
if(empty())
return false;
mgr.remove_least_valuable(entries_awaiting_eviction);
debug_assert(!entries_awaiting_eviction.empty());
}
const Entry& entry = entries_awaiting_eviction.front();
if(pItem)
*pItem = entry.item;
if(pSize)
*pSize = entry.size;
entries_awaiting_eviction.pop_front();
return true;
}
bool empty() const
{
return mgr.empty();
}
private:
typedef CacheEntry<Item, Divider> Entry;
// see note in remove_least_valuable().
std::list<Entry> entries_awaiting_eviction;
Manager<Key, Entry> mgr;
};
#endif // #ifndef INCLUDED_CACHE_ADT