1
0
forked from 0ad/0ad
0ad/source/renderer/WaterManager.cpp
wraitii 01a8138780 Water GLSL shader improvements around reflections and whitespace fixes.
This improves refractions around entities close to the surface, such as
fishes, by handling depth better and by clipping the water plane a
little lower.

This uses the skybox for reflections when refractions are enabled but
reflections are disabled, making it possible to play with reflections
disabled without having super-ugly water (arguably a performance
improvement).

Differential Revision: https://code.wildfiregames.com/D359
This was SVN commit r22297.
2019-05-25 11:08:57 +00:00

1159 lines
38 KiB
C++

/* Copyright (C) 2019 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Water settings (speed, height) and texture management
*/
#include "precompiled.h"
#include "graphics/Terrain.h"
#include "graphics/TextureManager.h"
#include "graphics/ShaderManager.h"
#include "graphics/ShaderProgram.h"
#include "lib/bits.h"
#include "lib/timer.h"
#include "lib/tex/tex.h"
#include "lib/res/graphics/ogl_tex.h"
#include "maths/MathUtil.h"
#include "maths/Vector2D.h"
#include "ps/CLogger.h"
#include "ps/Game.h"
#include "ps/World.h"
#include "renderer/WaterManager.h"
#include "renderer/Renderer.h"
#include "simulation2/Simulation2.h"
#include "simulation2/components/ICmpWaterManager.h"
#include "simulation2/components/ICmpRangeManager.h"
///////////////////////////////////////////////////////////////////////////////////////////////
// WaterManager implementation
struct CoastalPoint
{
CoastalPoint(int idx, CVector2D pos) : index(idx), position(pos) {};
int index;
CVector2D position;
};
struct SWavesVertex {
// vertex position
CVector3D m_BasePosition;
CVector3D m_ApexPosition;
CVector3D m_SplashPosition;
CVector3D m_RetreatPosition;
CVector2D m_PerpVect;
u8 m_UV[3];
// pad to a power of two
u8 m_Padding[5];
};
cassert(sizeof(SWavesVertex) == 64);
struct WaveObject
{
CVertexBuffer::VBChunk* m_VBvertices;
CBoundingBoxAligned m_AABB;
size_t m_Width;
float m_TimeDiff;
};
///////////////////////////////////////////////////////////////////
// Construction/Destruction
WaterManager::WaterManager()
{
// water
m_RenderWater = false; // disabled until textures are successfully loaded
m_WaterHeight = 5.0f;
m_WaterCurrentTex = 0;
m_ReflectionTexture = 0;
m_RefractionTexture = 0;
m_RefTextureSize = 0;
m_ReflectionFbo = 0;
m_RefractionFbo = 0;
m_FancyEffectsFBO = 0;
m_WaterTexTimer = 0.0;
m_WindAngle = 0.0f;
m_Waviness = 8.0f;
m_WaterColor = CColor(0.3f, 0.35f, 0.7f, 1.0f);
m_WaterTint = CColor(0.28f, 0.3f, 0.59f, 1.0f);
m_Murkiness = 0.45f;
m_RepeatPeriod = 16.0f;
m_DistanceHeightmap = NULL;
m_BlurredNormalMap = NULL;
m_WindStrength = NULL;
m_ShoreWaves_VBIndices = NULL;
m_WaterEffects = true;
m_WaterFancyEffects = false;
m_WaterRealDepth = false;
m_WaterRefraction = false;
m_WaterReflection = false;
m_WaterShadows = false;
m_WaterType = L"ocean";
m_NeedsReloading = false;
m_NeedInfoUpdate = true;
m_depthTT = 0;
m_FancyTextureNormal = 0;
m_FancyTextureOther = 0;
m_FancyTextureDepth = 0;
m_ReflFboDepthTexture = 0;
m_RefrFboDepthTexture = 0;
m_MapSize = 0;
m_updatei0 = 0;
m_updatej0 = 0;
m_updatei1 = 0;
m_updatej1 = 0;
}
WaterManager::~WaterManager()
{
// Cleanup if the caller messed up
UnloadWaterTextures();
for (WaveObject* const& obj : m_ShoreWaves)
{
if (obj->m_VBvertices)
g_VBMan.Release(obj->m_VBvertices);
delete obj;
}
if (m_ShoreWaves_VBIndices)
g_VBMan.Release(m_ShoreWaves_VBIndices);
delete[] m_DistanceHeightmap;
delete[] m_BlurredNormalMap;
delete[] m_WindStrength;
if (!g_Renderer.GetCapabilities().m_PrettyWater)
return;
glDeleteTextures(1, &m_depthTT);
glDeleteTextures(1, &m_FancyTextureNormal);
glDeleteTextures(1, &m_FancyTextureOther);
glDeleteTextures(1, &m_FancyTextureDepth);
glDeleteTextures(1, &m_ReflFboDepthTexture);
glDeleteTextures(1, &m_RefrFboDepthTexture);
pglDeleteFramebuffersEXT(1, &m_FancyEffectsFBO);
pglDeleteFramebuffersEXT(1, &m_RefractionFbo);
pglDeleteFramebuffersEXT(1, &m_ReflectionFbo);
}
///////////////////////////////////////////////////////////////////
// Progressive load of water textures
int WaterManager::LoadWaterTextures()
{
// TODO: this doesn't need to be progressive-loading any more
// (since texture loading is async now)
wchar_t pathname[PATH_MAX];
// Load diffuse grayscale images (for non-fancy water)
for (size_t i = 0; i < ARRAY_SIZE(m_WaterTexture); ++i)
{
swprintf_s(pathname, ARRAY_SIZE(pathname), L"art/textures/animated/water/default/diffuse%02d.dds", (int)i+1);
CTextureProperties textureProps(pathname);
textureProps.SetWrap(GL_REPEAT);
CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps);
texture->Prefetch();
m_WaterTexture[i] = texture;
}
if (!g_Renderer.GetCapabilities().m_PrettyWater)
{
// Enable rendering, now that we've succeeded this far
m_RenderWater = true;
return 0;
}
#if CONFIG2_GLES
#warning Fix WaterManager::LoadWaterTextures on GLES
#else
// Load normalmaps (for fancy water)
for (size_t i = 0; i < ARRAY_SIZE(m_NormalMap); ++i)
{
swprintf_s(pathname, ARRAY_SIZE(pathname), L"art/textures/animated/water/%ls/normal00%02d.png", m_WaterType.c_str(), (int)i+1);
CTextureProperties textureProps(pathname);
textureProps.SetWrap(GL_REPEAT);
textureProps.SetMaxAnisotropy(4);
CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps);
texture->Prefetch();
m_NormalMap[i] = texture;
}
// Load CoastalWaves
{
CTextureProperties textureProps(L"art/textures/terrain/types/water/coastalWave.png");
textureProps.SetWrap(GL_REPEAT);
CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps);
texture->Prefetch();
m_WaveTex = texture;
}
// Load Foam
{
CTextureProperties textureProps(L"art/textures/terrain/types/water/foam.png");
textureProps.SetWrap(GL_REPEAT);
CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps);
texture->Prefetch();
m_FoamTex = texture;
}
// Use screen-sized textures for minimum artifacts.
m_RefTextureSize = g_Renderer.GetHeight();
m_RefTextureSize = round_up_to_pow2(m_RefTextureSize);
// Create reflection texture
glGenTextures(1, &m_ReflectionTexture);
glBindTexture(GL_TEXTURE_2D, m_ReflectionTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8, (GLsizei)m_RefTextureSize, (GLsizei)m_RefTextureSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
// Create refraction texture
glGenTextures(1, &m_RefractionTexture);
glBindTexture(GL_TEXTURE_2D, m_RefractionTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8, (GLsizei)m_RefTextureSize, (GLsizei)m_RefTextureSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
// Create depth textures
glGenTextures(1, &m_ReflFboDepthTexture);
glBindTexture(GL_TEXTURE_2D, m_ReflFboDepthTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D( GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, (GLsizei)m_RefTextureSize, (GLsizei)m_RefTextureSize, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL);
glGenTextures(1, &m_RefrFboDepthTexture);
glBindTexture(GL_TEXTURE_2D, m_RefrFboDepthTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D( GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, (GLsizei)m_RefTextureSize, (GLsizei)m_RefTextureSize, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL);
// Create the Fancy Effects texture
glGenTextures(1, &m_FancyTextureNormal);
glBindTexture(GL_TEXTURE_2D, m_FancyTextureNormal);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glGenTextures(1, &m_FancyTextureOther);
glBindTexture(GL_TEXTURE_2D, m_FancyTextureOther);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glGenTextures(1, &m_FancyTextureDepth);
glBindTexture(GL_TEXTURE_2D, m_FancyTextureDepth);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBindTexture(GL_TEXTURE_2D, 0);
Resize();
// Create the water framebuffers
GLint currentFbo;
glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, &currentFbo);
m_ReflectionFbo = 0;
pglGenFramebuffersEXT(1, &m_ReflectionFbo);
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_ReflectionFbo);
pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, m_ReflectionTexture, 0);
pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, m_ReflFboDepthTexture, 0);
ogl_WarnIfError();
GLenum status = pglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
if (status != GL_FRAMEBUFFER_COMPLETE_EXT)
{
LOGWARNING("Reflection framebuffer object incomplete: 0x%04X", status);
g_Renderer.m_Options.m_WaterReflection = false;
}
m_RefractionFbo = 0;
pglGenFramebuffersEXT(1, &m_RefractionFbo);
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_RefractionFbo);
pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, m_RefractionTexture, 0);
pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, m_RefrFboDepthTexture, 0);
ogl_WarnIfError();
status = pglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
if (status != GL_FRAMEBUFFER_COMPLETE_EXT)
{
LOGWARNING("Refraction framebuffer object incomplete: 0x%04X", status);
g_Renderer.m_Options.m_WaterRefraction = false;
}
pglGenFramebuffersEXT(1, &m_FancyEffectsFBO);
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_FancyEffectsFBO);
pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, m_FancyTextureNormal, 0);
pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT1_EXT, GL_TEXTURE_2D, m_FancyTextureOther, 0);
pglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, m_FancyTextureDepth, 0);
ogl_WarnIfError();
status = pglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
if (status != GL_FRAMEBUFFER_COMPLETE_EXT)
{
LOGWARNING("Fancy Effects framebuffer object incomplete: 0x%04X", status);
g_Renderer.m_Options.m_WaterRefraction = false;
}
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, currentFbo);
// Enable rendering, now that we've succeeded this far
m_RenderWater = true;
#endif
return 0;
}
///////////////////////////////////////////////////////////////////
// Resize: Updates the fancy water textures.
void WaterManager::Resize()
{
glBindTexture(GL_TEXTURE_2D, m_FancyTextureNormal);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8, (GLsizei)g_Renderer.GetWidth(), (GLsizei)g_Renderer.GetHeight(), 0, GL_RGBA, GL_UNSIGNED_SHORT, NULL);
glBindTexture(GL_TEXTURE_2D, m_FancyTextureOther);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8, (GLsizei)g_Renderer.GetWidth(), (GLsizei)g_Renderer.GetHeight(), 0, GL_RGBA, GL_UNSIGNED_SHORT, NULL);
glBindTexture(GL_TEXTURE_2D, m_FancyTextureDepth);
glTexImage2D( GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, (GLsizei)g_Renderer.GetWidth(), (GLsizei)g_Renderer.GetHeight(), 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
}
// This is for Atlas. TODO: this copies code from init, should reuse it.
void WaterManager::ReloadWaterNormalTextures()
{
wchar_t pathname[PATH_MAX];
// Load normalmaps (for fancy water)
for (size_t i = 0; i < ARRAY_SIZE(m_NormalMap); ++i)
{
swprintf_s(pathname, ARRAY_SIZE(pathname), L"art/textures/animated/water/%ls/normal00%02d.png", m_WaterType.c_str(), (int)i+1);
CTextureProperties textureProps(pathname);
textureProps.SetWrap(GL_REPEAT);
textureProps.SetMaxAnisotropy(4);
CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps);
texture->Prefetch();
m_NormalMap[i] = texture;
}
}
///////////////////////////////////////////////////////////////////
// Unload water textures
void WaterManager::UnloadWaterTextures()
{
for(size_t i = 0; i < ARRAY_SIZE(m_WaterTexture); i++)
m_WaterTexture[i].reset();
if (!g_Renderer.GetCapabilities().m_PrettyWater)
return;
for(size_t i = 0; i < ARRAY_SIZE(m_NormalMap); i++)
m_NormalMap[i].reset();
glDeleteTextures(1, &m_ReflectionTexture);
glDeleteTextures(1, &m_RefractionTexture);
pglDeleteFramebuffersEXT(1, &m_RefractionFbo);
pglDeleteFramebuffersEXT(1, &m_ReflectionFbo);
}
template<bool Transpose>
static inline void ComputeDirection(float* distanceMap, const u16* heightmap, float waterHeight, size_t SideSize, size_t maxLevel)
{
#define ABOVEWATER(x, z) (HEIGHT_SCALE * heightmap[z*SideSize + x] >= waterHeight)
#define UPDATELOOKAHEAD \
for (; lookahead <= id2+maxLevel && lookahead < SideSize && \
((!Transpose && ABOVEWATER(lookahead, id1)) || (Transpose && ABOVEWATER(id1, lookahead))); ++lookahead)
// Algorithm:
// We want to know the distance to the closest shore point. Go through each line/column,
// keep track of when we encountered the last shore point and how far ahead the next one is.
for (size_t id1 = 0; id1 < SideSize; ++id1)
{
size_t id2 = 0;
const size_t& x = Transpose ? id1 : id2;
const size_t& z = Transpose ? id2 : id1;
size_t level = ABOVEWATER(x, z) ? 0 : maxLevel;
size_t lookahead = (size_t)(level > 0);
UPDATELOOKAHEAD;
// start moving
for (; id2 < SideSize; ++id2)
{
// update current level
if (ABOVEWATER(x, z))
level = 0;
else
level = std::min(level+1, maxLevel);
// move lookahead
if (lookahead == id2)
++lookahead;
UPDATELOOKAHEAD;
// This is the important bit: set the distance to either:
// - the distance to the previous shore point (level)
// - the distance to the next shore point (lookahead-id2)
distanceMap[z*SideSize + x] = std::min(distanceMap[z*SideSize + x], (float)std::min(lookahead-id2, level));
}
}
#undef ABOVEWATER
#undef UPDATELOOKAHEAD
}
///////////////////////////////////////////////////////////////////
// Calculate our binary heightmap from the terrain heightmap.
void WaterManager::RecomputeDistanceHeightmap()
{
CTerrain* terrain = g_Game->GetWorld()->GetTerrain();
if (!terrain || !terrain->GetHeightMap())
return;
size_t SideSize = m_MapSize;
// we want to look ahead some distance, but not too much (less efficient and not interesting). This is our lookahead.
const size_t maxLevel = 5;
if (m_DistanceHeightmap == NULL)
{
m_DistanceHeightmap = new float[SideSize*SideSize];
std::fill(m_DistanceHeightmap, m_DistanceHeightmap + SideSize*SideSize, (float)maxLevel);
}
// Create a manhattan-distance heightmap.
// This could be refined to only be done near the coast itself, but it's probably not necessary.
u16* heightmap = terrain->GetHeightMap();
ComputeDirection<false>(m_DistanceHeightmap, heightmap, m_WaterHeight, SideSize, maxLevel);
ComputeDirection<true>(m_DistanceHeightmap, heightmap, m_WaterHeight, SideSize, maxLevel);
}
// This requires m_DistanceHeightmap to be defined properly.
void WaterManager::CreateWaveMeshes()
{
if (m_MapSize == 0)
return;
CTerrain* terrain = g_Game->GetWorld()->GetTerrain();
if (!terrain || !terrain->GetHeightMap())
return;
for (WaveObject* const& obj : m_ShoreWaves)
{
if (obj->m_VBvertices)
g_VBMan.Release(obj->m_VBvertices);
delete obj;
}
m_ShoreWaves.clear();
if (m_ShoreWaves_VBIndices)
{
g_VBMan.Release(m_ShoreWaves_VBIndices);
m_ShoreWaves_VBIndices = NULL;
}
if (m_Waviness < 5.0f && m_WaterType != L"ocean")
return;
size_t SideSize = m_MapSize;
// First step: get the points near the coast.
std::set<int> CoastalPointsSet;
for (size_t z = 1; z < SideSize-1; ++z)
for (size_t x = 1; x < SideSize-1; ++x)
// get the points not on the shore but near it, ocean-side
if (m_DistanceHeightmap[z*m_MapSize + x] > 0.5f && m_DistanceHeightmap[z*m_MapSize + x] < 1.5f)
CoastalPointsSet.insert((z)*SideSize + x);
// Second step: create chains out of those coastal points.
static const int around[8][2] = { { -1,-1 }, { -1,0 }, { -1,1 }, { 0,1 }, { 1,1 }, { 1,0 }, { 1,-1 }, { 0,-1 } };
std::vector<std::deque<CoastalPoint> > CoastalPointsChains;
while (!CoastalPointsSet.empty())
{
int index = *(CoastalPointsSet.begin());
int x = index % SideSize;
int y = (index - x ) / SideSize;
std::deque<CoastalPoint> Chain;
Chain.push_front(CoastalPoint(index,CVector2D(x*4,y*4)));
// Erase us.
CoastalPointsSet.erase(CoastalPointsSet.begin());
// We're our starter points. At most we can have 2 points close to us.
// We'll pick the first one and look for its neighbors (he can only have one new)
// Up until we either reach the end of the chain, or ourselves.
// Then go down the other direction if there is any.
int neighbours[2] = { -1, -1 };
int nbNeighb = 0;
for (int i = 0; i < 8; ++i)
{
if (CoastalPointsSet.count(x + around[i][0] + (y + around[i][1])*SideSize))
{
if (nbNeighb < 2)
neighbours[nbNeighb] = x + around[i][0] + (y + around[i][1])*SideSize;
++nbNeighb;
}
}
if (nbNeighb > 2)
continue;
for (int i = 0; i < 2; ++i)
{
if (neighbours[i] == -1)
continue;
// Move to our neighboring point
int xx = neighbours[i] % SideSize;
int yy = (neighbours[i] - xx ) / SideSize;
int indexx = xx + yy*SideSize;
int endedChain = false;
if (i == 0)
Chain.push_back(CoastalPoint(indexx,CVector2D(xx*4,yy*4)));
else
Chain.push_front(CoastalPoint(indexx,CVector2D(xx*4,yy*4)));
// If there's a loop we'll be the "other" neighboring point already so check for that.
// We'll readd at the end/front the other one to have full squares.
if (CoastalPointsSet.count(indexx) == 0)
break;
CoastalPointsSet.erase(indexx);
// Start checking from there.
while(!endedChain)
{
bool found = false;
nbNeighb = 0;
for (int p = 0; p < 8; ++p)
{
if (CoastalPointsSet.count(xx+around[p][0] + (yy + around[p][1])*SideSize))
{
if (nbNeighb >= 2)
{
CoastalPointsSet.erase(xx + yy*SideSize);
continue;
}
++nbNeighb;
// We've found a new point around us.
// Move there
xx = xx + around[p][0];
yy = yy + around[p][1];
indexx = xx + yy*SideSize;
if (i == 0)
Chain.push_back(CoastalPoint(indexx,CVector2D(xx*4,yy*4)));
else
Chain.push_front(CoastalPoint(indexx,CVector2D(xx*4,yy*4)));
CoastalPointsSet.erase(xx + yy*SideSize);
found = true;
break;
}
}
if (!found)
endedChain = true;
}
}
if (Chain.size() > 10)
CoastalPointsChains.push_back(Chain);
}
// (optional) third step: Smooth chains out.
// This is also really dumb.
for (size_t i = 0; i < CoastalPointsChains.size(); ++i)
{
// Bump 1 for smoother.
for (int p = 0; p < 3; ++p)
{
for (size_t j = 1; j < CoastalPointsChains[i].size()-1; ++j)
{
CVector2D realPos = CoastalPointsChains[i][j-1].position + CoastalPointsChains[i][j+1].position;
CoastalPointsChains[i][j].position = (CoastalPointsChains[i][j].position + realPos/2.0f)/2.0f;
}
}
}
// Fourth step: create waves themselves, using those chains. We basically create subchains.
size_t waveSizes = 14; // maximal size in width.
// Construct indices buffer (we can afford one for all of them)
std::vector<GLushort> water_indices;
for (size_t a = 0; a < waveSizes-1;++a)
{
for (size_t rect = 0; rect < 7; ++rect)
{
water_indices.push_back(a*9 + rect);
water_indices.push_back(a*9 + 9 + rect);
water_indices.push_back(a*9 + 1 + rect);
water_indices.push_back(a*9 + 9 + rect);
water_indices.push_back(a*9 + 10 + rect);
water_indices.push_back(a*9 + 1 + rect);
}
}
// Generic indexes, max-length
m_ShoreWaves_VBIndices = g_VBMan.Allocate(sizeof(GLushort), water_indices.size(), GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER);
m_ShoreWaves_VBIndices->m_Owner->UpdateChunkVertices(m_ShoreWaves_VBIndices, &water_indices[0]);
float diff = (rand() % 50) / 5.0f;
for (size_t i = 0; i < CoastalPointsChains.size(); ++i)
{
for (size_t j = 0; j < CoastalPointsChains[i].size()-waveSizes; ++j)
{
if (CoastalPointsChains[i].size()- 1 - j < waveSizes)
break;
size_t width = waveSizes;
// First pass to get some parameters out.
float outmost = 0.0f; // how far to move on the shore.
float avgDepth = 0.0f;
int sign = 1;
CVector2D firstPerp(0,0), perp(0,0), lastPerp(0,0);
for (size_t a = 0; a < waveSizes;++a)
{
lastPerp = perp;
perp = CVector2D(0,0);
int nb = 0;
CVector2D pos = CoastalPointsChains[i][j+a].position;
CVector2D posPlus;
CVector2D posMinus;
if (a > 0)
{
++nb;
posMinus = CoastalPointsChains[i][j+a-1].position;
perp += pos-posMinus;
}
if (a < waveSizes-1)
{
++nb;
posPlus = CoastalPointsChains[i][j+a+1].position;
perp += posPlus-pos;
}
perp /= nb;
perp = CVector2D(-perp.Y,perp.X).Normalized();
if (a == 0)
firstPerp = perp;
if ( a > 1 && perp.Dot(lastPerp) < 0.90f && perp.Dot(firstPerp) < 0.70f)
{
width = a+1;
break;
}
if (terrain->GetExactGroundLevel(pos.X+perp.X*1.5f, pos.Y+perp.Y*1.5f) > m_WaterHeight)
sign = -1;
avgDepth += terrain->GetExactGroundLevel(pos.X+sign*perp.X*20.0f, pos.Y+sign*perp.Y*20.0f) - m_WaterHeight;
float localOutmost = -2.0f;
while (localOutmost < 0.0f)
{
float depth = terrain->GetExactGroundLevel(pos.X+sign*perp.X*localOutmost, pos.Y+sign*perp.Y*localOutmost) - m_WaterHeight;
if (depth < 0.0f || depth > 0.6f)
localOutmost += 0.2f;
else
break;
}
outmost += localOutmost;
}
if (width < 5)
{
j += 6;
continue;
}
outmost /= width;
if (outmost > -0.5f)
{
j += 3;
continue;
}
outmost = -2.5f + outmost * m_Waviness/10.0f;
avgDepth /= width;
if (avgDepth > -1.3f)
{
j += 3;
continue;
}
// we passed the checks, we can create a wave of size "width".
WaveObject* shoreWave = new WaveObject;
std::vector<SWavesVertex> vertices;
vertices.reserve(9*width);
shoreWave->m_Width = width;
shoreWave->m_TimeDiff = diff;
diff += (rand() % 100) / 25.0f + 4.0f;
for (size_t a = 0; a < width;++a)
{
CVector2D perp = CVector2D(0,0);
int nb = 0;
CVector2D pos = CoastalPointsChains[i][j+a].position;
CVector2D posPlus;
CVector2D posMinus;
if (a > 0)
{
++nb;
posMinus = CoastalPointsChains[i][j+a-1].position;
perp += pos-posMinus;
}
if (a < waveSizes-1)
{
++nb;
posPlus = CoastalPointsChains[i][j+a+1].position;
perp += posPlus-pos;
}
perp /= nb;
perp = CVector2D(-perp.Y,perp.X).Normalized();
SWavesVertex point[9];
float baseHeight = 0.04f;
float halfWidth = (width-1.0f)/2.0f;
float sideNess = sqrtf(clamp( (halfWidth - fabsf(a-halfWidth))/3.0f, 0.0f,1.0f));
point[0].m_UV[0] = a; point[0].m_UV[1] = 8;
point[1].m_UV[0] = a; point[1].m_UV[1] = 7;
point[2].m_UV[0] = a; point[2].m_UV[1] = 6;
point[3].m_UV[0] = a; point[3].m_UV[1] = 5;
point[4].m_UV[0] = a; point[4].m_UV[1] = 4;
point[5].m_UV[0] = a; point[5].m_UV[1] = 3;
point[6].m_UV[0] = a; point[6].m_UV[1] = 2;
point[7].m_UV[0] = a; point[7].m_UV[1] = 1;
point[8].m_UV[0] = a; point[8].m_UV[1] = 0;
point[0].m_PerpVect = perp;
point[1].m_PerpVect = perp;
point[2].m_PerpVect = perp;
point[3].m_PerpVect = perp;
point[4].m_PerpVect = perp;
point[5].m_PerpVect = perp;
point[6].m_PerpVect = perp;
point[7].m_PerpVect = perp;
point[8].m_PerpVect = perp;
static const float perpT1[9] = { 6.0f, 6.05f, 6.1f, 6.2f, 6.3f, 6.4f, 6.5f, 6.6f, 9.7f };
static const float perpT2[9] = { 2.0f, 2.1f, 2.2f, 2.3f, 2.4f, 3.0f, 3.3f, 3.6f, 9.5f };
static const float perpT3[9] = { 1.1f, 0.7f, -0.2f, 0.0f, 0.6f, 1.3f, 2.2f, 3.6f, 9.0f };
static const float perpT4[9] = { 2.0f, 2.1f, 1.2f, 1.5f, 1.7f, 1.9f, 2.7f, 3.8f, 9.0f };
static const float heightT1[9] = { 0.0f, 0.2f, 0.5f, 0.8f, 0.9f, 0.85f, 0.6f, 0.2f, 0.0 };
static const float heightT2[9] = { -0.8f, -0.4f, 0.0f, 0.1f, 0.1f, 0.03f, 0.0f, 0.0f, 0.0 };
static const float heightT3[9] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0 };
for (size_t t = 0; t < 9; ++t)
{
float terrHeight = 0.05f + terrain->GetExactGroundLevel(pos.X+sign*perp.X*(perpT1[t]+outmost),
pos.Y+sign*perp.Y*(perpT1[t]+outmost));
point[t].m_BasePosition = CVector3D(pos.X+sign*perp.X*(perpT1[t]+outmost), baseHeight + heightT1[t]*sideNess + std::max(m_WaterHeight,terrHeight),
pos.Y+sign*perp.Y*(perpT1[t]+outmost));
}
for (size_t t = 0; t < 9; ++t)
{
float terrHeight = 0.05f + terrain->GetExactGroundLevel(pos.X+sign*perp.X*(perpT2[t]+outmost),
pos.Y+sign*perp.Y*(perpT2[t]+outmost));
point[t].m_ApexPosition = CVector3D(pos.X+sign*perp.X*(perpT2[t]+outmost), baseHeight + heightT1[t]*sideNess + std::max(m_WaterHeight,terrHeight),
pos.Y+sign*perp.Y*(perpT2[t]+outmost));
}
for (size_t t = 0; t < 9; ++t)
{
float terrHeight = 0.05f + terrain->GetExactGroundLevel(pos.X+sign*perp.X*(perpT3[t]+outmost*sideNess),
pos.Y+sign*perp.Y*(perpT3[t]+outmost*sideNess));
point[t].m_SplashPosition = CVector3D(pos.X+sign*perp.X*(perpT3[t]+outmost*sideNess), baseHeight + heightT2[t]*sideNess + std::max(m_WaterHeight,terrHeight), pos.Y+sign*perp.Y*(perpT3[t]+outmost*sideNess));
}
for (size_t t = 0; t < 9; ++t)
{
float terrHeight = 0.05f + terrain->GetExactGroundLevel(pos.X+sign*perp.X*(perpT4[t]+outmost),
pos.Y+sign*perp.Y*(perpT4[t]+outmost));
point[t].m_RetreatPosition = CVector3D(pos.X+sign*perp.X*(perpT4[t]+outmost), baseHeight + heightT3[t]*sideNess + std::max(m_WaterHeight,terrHeight),
pos.Y+sign*perp.Y*(perpT4[t]+outmost));
}
vertices.push_back(point[8]);
vertices.push_back(point[7]);
vertices.push_back(point[6]);
vertices.push_back(point[5]);
vertices.push_back(point[4]);
vertices.push_back(point[3]);
vertices.push_back(point[2]);
vertices.push_back(point[1]);
vertices.push_back(point[0]);
shoreWave->m_AABB += point[8].m_SplashPosition;
shoreWave->m_AABB += point[8].m_BasePosition;
shoreWave->m_AABB += point[0].m_SplashPosition;
shoreWave->m_AABB += point[0].m_BasePosition;
shoreWave->m_AABB += point[4].m_ApexPosition;
}
if (sign == 1)
{
// Let's do some fancy reversing.
std::vector<SWavesVertex> reversed;
reversed.reserve(vertices.size());
for (int a = width-1; a >= 0; --a)
{
for (size_t t = 0; t < 9; ++t)
reversed.push_back(vertices[a*9+t]);
}
vertices = reversed;
}
j += width/2-1;
shoreWave->m_VBvertices = g_VBMan.Allocate(sizeof(SWavesVertex), vertices.size(), GL_STATIC_DRAW, GL_ARRAY_BUFFER);
shoreWave->m_VBvertices->m_Owner->UpdateChunkVertices(shoreWave->m_VBvertices, &vertices[0]);
m_ShoreWaves.push_back(shoreWave);
}
}
}
void WaterManager::RenderWaves(const CFrustum& frustrum)
{
#if CONFIG2_GLES
#warning Fix WaterManager::RenderWaves on GLES
#else
if (g_Renderer.m_SkipSubmit || !m_WaterFancyEffects)
return;
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_FancyEffectsFBO);
GLuint attachments[2] = { GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT };
pglDrawBuffers(2, attachments);
glClearColor(0.0f,0.0f, 0.0f,0.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS);
CShaderDefines none;
CShaderProgramPtr shad = g_Renderer.GetShaderManager().LoadProgram("glsl/waves", none);
shad->Bind();
shad->BindTexture(str_waveTex, m_WaveTex);
shad->BindTexture(str_foamTex, m_FoamTex);
shad->Uniform(str_time, (float)m_WaterTexTimer);
shad->Uniform(str_transform, g_Renderer.GetViewCamera().GetViewProjection());
for (size_t a = 0; a < m_ShoreWaves.size(); ++a)
{
if (!frustrum.IsBoxVisible(m_ShoreWaves[a]->m_AABB))
continue;
CVertexBuffer::VBChunk* VBchunk = m_ShoreWaves[a]->m_VBvertices;
SWavesVertex* base = (SWavesVertex*)VBchunk->m_Owner->Bind();
// setup data pointers
GLsizei stride = sizeof(SWavesVertex);
shad->VertexPointer(3, GL_FLOAT, stride, &base[VBchunk->m_Index].m_BasePosition);
shad->TexCoordPointer(GL_TEXTURE0, 2, GL_UNSIGNED_BYTE, stride, &base[VBchunk->m_Index].m_UV);
// NormalPointer(gl_FLOAT, stride, &base[m_VBWater->m_Index].m_UV)
pglVertexAttribPointerARB(2, 2, GL_FLOAT, GL_TRUE, stride, &base[VBchunk->m_Index].m_PerpVect); // replaces commented above because my normal is vec2
shad->VertexAttribPointer(str_a_apexPosition, 3, GL_FLOAT, false, stride, &base[VBchunk->m_Index].m_ApexPosition);
shad->VertexAttribPointer(str_a_splashPosition, 3, GL_FLOAT, false, stride, &base[VBchunk->m_Index].m_SplashPosition);
shad->VertexAttribPointer(str_a_retreatPosition, 3, GL_FLOAT, false, stride, &base[VBchunk->m_Index].m_RetreatPosition);
shad->AssertPointersBound();
shad->Uniform(str_translation, m_ShoreWaves[a]->m_TimeDiff);
shad->Uniform(str_width, (int)m_ShoreWaves[a]->m_Width);
u8* indexBase = m_ShoreWaves_VBIndices->m_Owner->Bind();
glDrawElements(GL_TRIANGLES, (GLsizei) (m_ShoreWaves[a]->m_Width-1)*(7*6),
GL_UNSIGNED_SHORT, indexBase + sizeof(u16)*(m_ShoreWaves_VBIndices->m_Index));
shad->Uniform(str_translation, m_ShoreWaves[a]->m_TimeDiff + 6.0f);
// TODO: figure out why this doesn't work.
//g_Renderer.m_Stats.m_DrawCalls++;
//g_Renderer.m_Stats.m_WaterTris += m_ShoreWaves_VBIndices->m_Count / 3;
CVertexBuffer::Unbind();
}
shad->Unbind();
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
glDisable(GL_BLEND);
glDepthFunc(GL_LEQUAL);
#endif
}
///////////////////////////////////////////////////////////////////
// Calculate The blurred normal map to get an idea of where water ought to go.
void WaterManager::RecomputeBlurredNormalMap()
{
CTerrain* terrain = g_Game->GetWorld()->GetTerrain();
if (!terrain || !terrain->GetHeightMap())
return;
// used to cache terrain normals since otherwise we'd recalculate them a lot (I'm blurring the "normal" map).
// this might be updated to actually cache in the terrain manager but that's not for now.
if (m_BlurredNormalMap == NULL)
m_BlurredNormalMap = new CVector3D[m_MapSize*m_MapSize];
// It's really slow to calculate normals so cache them first.
CVector3D* normals = new CVector3D[m_MapSize*m_MapSize];
// Not the edges, we won't care about them.
float ii = 8.0f, jj = 8.0f;
for (size_t j = 2; j < m_MapSize-2; ++j, jj += 4.0f)
for (size_t i = 2; i < m_MapSize-2; ++i, ii += 4.0f)
{
CVector3D norm;
terrain->CalcNormal(i,j,norm);
normals[j*m_MapSize + i] = norm;
}
// We could be way fancier (and faster) for our blur but we probably don't need the complexity.
// Two pass filter, nothing complicated here.
CVector3D blurValue;
ii = 8.0f; jj = 8.0f;
size_t idx = 2;
for (size_t j = 2; j < m_MapSize-2; ++j, jj += 4.0f)
for (size_t i = 2; i < m_MapSize-2; ++i, ii += 4.0f,++idx)
{
blurValue = normals[idx-2];
blurValue += normals[idx-1];
blurValue += normals[idx];
blurValue += normals[idx+1];
blurValue += normals[idx+2];
m_BlurredNormalMap[idx] = blurValue * 0.2f;
}
// y direction, probably slower because of cache misses but I don't see an easy way around that.
ii = 8.0f; jj = 8.0f;
for (size_t i = 2; i < m_MapSize-2; ++i, ii += 4.0f)
{
for (size_t j = 2; j < m_MapSize-2; ++j, jj += 4.0f)
{
blurValue = normals[(j-2)*m_MapSize + i];
blurValue += normals[(j-1)*m_MapSize + i];
blurValue += normals[j*m_MapSize + i];
blurValue += normals[(j+1)*m_MapSize + i];
blurValue += normals[(j+2)*m_MapSize + i];
m_BlurredNormalMap[j*m_MapSize + i] = blurValue * 0.2f;
}
}
delete[] normals;
}
void WaterManager::RecomputeWaterData()
{
if (!m_MapSize)
return;
RecomputeDistanceHeightmap();
RecomputeWindStrength();
CreateWaveMeshes();
}
///////////////////////////////////////////////////////////////////
// Calculate the strength of the wind at a given point on the map.
// This is too slow and should support limited recomputation.
void WaterManager::RecomputeWindStrength()
{
if (m_WindStrength == NULL)
m_WindStrength = new float[m_MapSize*m_MapSize];
CTerrain* terrain = g_Game->GetWorld()->GetTerrain();
if (!terrain || !terrain->GetHeightMap())
return;
float waterLevel = m_WaterHeight;
CVector2D windDir = CVector2D(cos(m_WindAngle),sin(m_WindAngle));
CVector2D perp = CVector2D(-windDir.Y, windDir.X);
// Our kernel will sample 5 points going towards the wind (generally).
int kernel[5][2] = { {(int)windDir.X*2,(int)windDir.Y*2}, {(int)windDir.X*5,(int)windDir.Y*5}, {(int)windDir.X*9,(int)windDir.Y*9}, {(int)windDir.X*16,(int)windDir.Y*16}, {(int)windDir.X*25,(int)windDir.Y*25} };
float* Temp = new float[m_MapSize*m_MapSize];
std::fill(Temp, Temp + m_MapSize*m_MapSize, 1.0f);
for (size_t j = 0; j < m_MapSize; ++j)
for (size_t i = 0; i < m_MapSize; ++i)
{
float curHeight = terrain->GetVertexGroundLevel(i,j);
if (curHeight >= waterLevel)
{
Temp[j*m_MapSize + i] = 0.3f; // blurs too strong otherwise
continue;
}
if (terrain->GetVertexGroundLevel(i + ceil(windDir.X),j + ceil(windDir.Y)) < waterLevel)
continue;
// Calculate how dampened our waves should be.
float oldHeight = std::max(waterLevel,terrain->GetVertexGroundLevel(i+kernel[4][0],j+kernel[4][1]));
float currentHeight = std::max(waterLevel,terrain->GetVertexGroundLevel(i+kernel[3][0],j+kernel[3][1]));
float avgheight = oldHeight + currentHeight;
float tendency = currentHeight - oldHeight;
oldHeight = currentHeight;
currentHeight = std::max(waterLevel,terrain->GetVertexGroundLevel(i+kernel[2][0],j+kernel[2][1]));
avgheight += currentHeight;
tendency += currentHeight - oldHeight;
oldHeight = currentHeight;
currentHeight = std::max(waterLevel,terrain->GetVertexGroundLevel(i+kernel[1][0],j+kernel[1][1]));
avgheight += currentHeight;
tendency += currentHeight - oldHeight;
oldHeight = currentHeight;
currentHeight = std::max(waterLevel,terrain->GetVertexGroundLevel(i+kernel[0][0],j+kernel[0][1]));
avgheight += currentHeight;
tendency += currentHeight - oldHeight;
float baseLevel = std::max(0.0f,1.0f - (avgheight/5.0f-waterLevel)/20.0f);
baseLevel *= baseLevel;
tendency /= 15.0f;
baseLevel -= tendency; // if the terrain was sloping downwards, increase baselevel. Otherwise reduce.
baseLevel = clamp(baseLevel,0.0f,1.0f);
// Draw on map. This is pretty slow.
float length = 35.0f * (1.0f-baseLevel/1.8f);
for (float y = 0; y < length; y += 0.6f)
{
int xx = clamp(i - y * windDir.X,0.0f,(float)(m_MapSize-1));
int yy = clamp(j - y * windDir.Y,0.0f,(float)(m_MapSize-1));
Temp[yy*m_MapSize + xx] = Temp[yy*m_MapSize + xx] < (0.0f+baseLevel/1.5f) * (1.0f-y/length) + y/length * 1.0f ?
Temp[yy*m_MapSize + xx] : (0.0f+baseLevel/1.5f) * (1.0f-y/length) + y/length * 1.0f;
}
}
int blurKernel[4][2] = { {(int)ceil(windDir.X),(int)ceil(windDir.Y)}, {(int)windDir.X*3,(int)windDir.Y*3}, {(int)ceil(perp.X),(int)ceil(perp.Y)}, {(int)-ceil(perp.X),(int)-ceil(perp.Y)} };
float blurValue;
for (size_t j = 2; j < m_MapSize-2; ++j)
for (size_t i = 2; i < m_MapSize-2; ++i)
{
blurValue = Temp[(j+blurKernel[0][1])*m_MapSize + i+blurKernel[0][0]];
blurValue += Temp[(j+blurKernel[0][1])*m_MapSize + i+blurKernel[0][0]];
blurValue += Temp[(j+blurKernel[0][1])*m_MapSize + i+blurKernel[0][0]];
blurValue += Temp[(j+blurKernel[0][1])*m_MapSize + i+blurKernel[0][0]];
m_WindStrength[j*m_MapSize + i] = blurValue * 0.25f;
}
delete[] Temp;
}
////////////////////////////////////////////////////////////////////////
// TODO: This will always recalculate for now
void WaterManager::SetMapSize(size_t size)
{
// TODO: Im' blindly trusting the user here.
m_MapSize = size;
m_NeedInfoUpdate = true;
m_updatei0 = 0;
m_updatei1 = size;
m_updatej0 = 0;
m_updatej1 = size;
SAFE_ARRAY_DELETE(m_DistanceHeightmap);
SAFE_ARRAY_DELETE(m_BlurredNormalMap);
SAFE_ARRAY_DELETE(m_WindStrength);
}
////////////////////////////////////////////////////////////////////////
// This will set the bools properly
void WaterManager::UpdateQuality()
{
if (g_Renderer.GetOptionBool(CRenderer::OPT_WATEREFFECTS) != m_WaterEffects)
{
m_WaterEffects = g_Renderer.GetOptionBool(CRenderer::OPT_WATEREFFECTS);
m_NeedsReloading = true;
}
if (g_Renderer.GetOptionBool(CRenderer::OPT_WATERFANCYEFFECTS) != m_WaterFancyEffects) {
m_WaterFancyEffects = g_Renderer.GetOptionBool(CRenderer::OPT_WATERFANCYEFFECTS);
m_NeedsReloading = true;
}
if (g_Renderer.GetOptionBool(CRenderer::OPT_WATERREALDEPTH) != m_WaterRealDepth) {
m_WaterRealDepth = g_Renderer.GetOptionBool(CRenderer::OPT_WATERREALDEPTH);
m_NeedsReloading = true;
}
if (g_Renderer.GetOptionBool(CRenderer::OPT_WATERREFRACTION) != m_WaterRefraction) {
m_WaterRefraction = g_Renderer.GetOptionBool(CRenderer::OPT_WATERREFRACTION);
m_NeedsReloading = true;
}
if (g_Renderer.GetOptionBool(CRenderer::OPT_WATERREFLECTION) != m_WaterReflection) {
m_WaterReflection = g_Renderer.GetOptionBool(CRenderer::OPT_WATERREFLECTION);
m_NeedsReloading = true;
}
if (g_Renderer.GetOptionBool(CRenderer::OPT_SHADOWSONWATER) != m_WaterShadows) {
m_WaterShadows = g_Renderer.GetOptionBool(CRenderer::OPT_SHADOWSONWATER);
m_NeedsReloading = true;
}
}
bool WaterManager::WillRenderFancyWater()
{
return m_RenderWater && m_WaterEffects && g_Renderer.GetCapabilities().m_PrettyWater;
}