0ad/source/simulation/AStarEngine.cpp

614 lines
12 KiB
C++
Raw Normal View History

#include "precompiled.h"
#include "AStarEngine.h"
/* For AStarGoalLowLevel IsPassable/cost */
#include "Collision.h"
#include "Entity.h"
#include "ps/Overlay.h"
#include "ps/Game.h"
#include "ps/World.h"
#include "graphics/TextureEntry.h"
#include "graphics/TerrainProperties.h"
#include "graphics/Patch.h"
#include "graphics/Terrain.h"
#include "ps/Profile.h"
#include "lib/res/graphics/ogl_tex.h"
#include "ps/GameSetup/Config.h"
#define DEFAULT_SEARCH_LIMIT 1000
#define DEFAULT_INIT_NODES 1000
// TODO: do this for real
#define MAXSLOPE 3500
// Node status flags
enum
{
kClear = 0x00, // empty, unexamined
kPassable = 0x01, // examined, not blocked
kBlocked = 0x02, // examined, blocked
kOpen = 0x04, // on the open list
kClosed = 0x08 // on the closed list
};
class PathFindingTerrainOverlay : public TerrainOverlay
{
public:
char random[1021];
std::vector<CVector2D> aPath;
void setPath(const std::vector<CVector2D>& _aPath)
{
aPath =_aPath;
for(size_t k = 0 ; k< aPath.size();k++)
{
aPath[k] = WorldspaceToTilespace( aPath[k] );
}
}
CVector2D WorldspaceToTilespace( const CVector2D &ws )
{
return CVector2D(floor(ws.x/CELL_SIZE), floor(ws.y/CELL_SIZE));
}
bool inPath(ssize_t i, ssize_t j)
{
for(size_t k = 0 ; k<aPath.size();k++)
{
if(aPath[k].x== i && aPath[k].y== j)
return true;
}
return false;
}
virtual void ProcessTile(ssize_t i, ssize_t j)
{
if ( inPath( i, j))
{
RenderTile(CColor(random[(i*79+j*13) % ARRAY_SIZE(random)]/4.f, 1, 0, 0.3f), false);
RenderTileOutline(CColor(1, 1, 1, 1), 1, true);
}
}
};
CAStarEngine::CAStarEngine()
{
mSearchLimit = DEFAULT_SEARCH_LIMIT;
for(int i=0; i<DEFAULT_INIT_NODES; i++)
{
freeNodes.push_back(new AStarNode);
}
mFlagArraySize = 300;
mFlags = new AStarNodeFlag[mFlagArraySize*mFlagArraySize];
memset(mFlags, 0, mFlagArraySize*mFlagArraySize*sizeof(AStarNodeFlag));
// TODO: only instantiate this object when it's going to be used
pathfindingOverlay = new PathFindingTerrainOverlay();
}
CAStarEngine::CAStarEngine(AStarGoalBase *goal)
{
CAStarEngine();
mGoal = goal;
}
CAStarEngine::~CAStarEngine()
{
delete[] mFlags;
std::vector<AStarNode*>::iterator it;
for( it = usedNodes.begin(); it != usedNodes.end(); it++)
{
delete (*it);
}
for( it = freeNodes.begin(); it != freeNodes.end(); it++)
{
delete (*it);
}
}
/*
void CAStarEngine::TAStarTest()
{
//Kai: added for TA*
std::vector<CEntity*> results;
g_EntityManager.GetExtant(results);
for(int i =0 ; i < results.size(); i++)
{
CEntity* tempHandle = results[i];
debug_printf("Entity position: %f %f %f\n", tempHandle->m_position.X,tempHandle->m_position.Y,tempHandle->m_position.Z);
CBoundingObject* m_bounds = tempHandle->m_bounds;
switch( m_bounds->m_type )
{
case CBoundingObject::BOUND_CIRCLE:
{
break;
}
case CBoundingObject::BOUND_OABB:
{
glColor3f( 1, 1, 1 ); // Colour outline with player colour
glBegin(GL_LINES);
glVertex3f( 2, tempHandle->GetAnchorLevel( 2, 2 ) + 0.25f, 2 ); // lower left vertex
glVertex3f( 5, tempHandle->GetAnchorLevel( 5, 5 ) + 0.25f, 5 ); // upper vertex
glEnd();
break;
}
}
if(tempHandler->m_bound_type == CBoundingOjbect::BOUND_OABB)
{
debug_printf("Entity bound box: %f\n", tempHandler->m_bound_box.m_v);
}
}
}*/
bool CAStarEngine::FindPath(
const CVector2D &src, const CVector2D &dest, HEntity entity, float radius )
{
mSolved = false;
int iterations = 0;
mGoal->SetDestination(dest);
mGoal->SetRadius(radius);
AStarNode *start = GetFreeASNode();
start->coord = mGoal->GetTile(src);
start->parent = NULL;
start->g = 0;
start->f = start->h = mGoal->DistanceToGoal(start->coord);
ClearOpen();
ClearClosed();
PROFILE_START("memset cache");
memset(mFlags, 0, mFlagArraySize*mFlagArraySize*sizeof(AStarNodeFlag));
PROFILE_END("memset cache");
AddToOpen(start);
AStarNode *best = NULL;
while( iterations<mSearchLimit && (best = RemoveBestOpenNode()) != NULL )
{
iterations++;
PROFILE_START("AddToClosed");
AddToClosed(best);
PROFILE_END("AddToClosed");
if ( mGoal->IsAtGoal(best->coord) )
{
/* Path solved */
mSolved = true;
break;
}
/* Get neighbors of the best node */
std::vector<CVector2D> neighbors;
PROFILE_START("get neighbors");
neighbors = mGoal->GetNeighbors(best->coord, entity);
PROFILE_END("get neighbors");
/* Update the neighbors of the best node */
std::vector<CVector2D>::iterator it;
for( it = neighbors.begin(); it != neighbors.end(); it++ )
{
AStarNode* N = GetFreeASNode();
PROFILE_START("initialize neighbor");
N->coord = *it;
// Assign f,g,h to neighbor
N->g = best->g + mGoal->GetTileCost(best->coord, N->coord);
N->h = mGoal->DistanceToGoal(*it);
N->f = N->g +N->h;
N->parent = best;
PROFILE_END("initialize neighbor");
AStarNode* C;
PROFILE_START("search closed");
C = GetFromClosed(N->coord);
PROFILE_END("search closed");
bool update = false;
if( C!=NULL && (N->f < C->f) )
{
PROFILE_START("remove from closed");
// N is on Closed and N->f is better
RemoveFromClosed(C);
update = true;
PROFILE_END("remove from closed");
}
if (C==NULL || update)
{
PROFILE_START("add to open");
// N is not on Closed
AddToOpen(N);
PROFILE_END("add to open");
}
}
}
if (mSolved && best!=NULL)
{
//debug_printf("Number of nodes searched: %d\n", iterations);
ConstructPath(best);
}
//switch on/off grid path drawing by command line arg "-showOverlay"
//it's guarded here to stop setting the drawing path in pathfindingOverlay.
//(efficiency issue)
//the drawing is disabled in the render() function in TerrainOverlay.cpp
if(g_ShowPathfindingOverlay)
{
pathfindingOverlay->setPath(mPath);
}
Cleanup();
return mSolved;
}
void CAStarEngine::ConstructPath( AStarNode* end )
{
std::deque<CVector2D> path;
mPath.clear();
while( end!=NULL && (end->parent)!=NULL )
{
path.push_front(mGoal->GetCoord(end->coord));
end = end->parent;
}
mPath.insert(mPath.begin(), path.begin(), path.end());
}
std::vector<CVector2D> CAStarEngine::GetLastPath()
{
return mPath;
}
void CAStarEngine::SetSearchLimit( int limit )
{
mSearchLimit = limit;
}
void CAStarEngine::AddToOpen( AStarNode* node )
{
/* If not in open, should add, otherwise should promote */
AStarNodeFlag *flag = GetFlag(node->coord);
if (!IsOpen(flag))
{
mOpen.push(node);
}
else
{
mOpen.promote(node);
}
SetOpenFlag(flag);
}
AStarNode* CAStarEngine::RemoveBestOpenNode()
{
if (mOpen.empty())
return NULL;
AStarNode* top;
PROFILE_START("remove from open");
top = mOpen.top();
mOpen.pop();
ClearOpenFlag(GetFlag(top->coord));
PROFILE_END("remove from open");
return top;
}
void CAStarEngine::AddToClosed( AStarNode* node )
{
mClosed[node->coord] = node;
SetClosedFlag(GetFlag(node->coord));
}
void CAStarEngine::RemoveFromClosed( AStarNode* node )
{
mClosed.erase(node->coord);
ClearClosedFlag(GetFlag(node->coord));
}
AStarNode* CAStarEngine::GetFromClosed( const CVector2D& loc )
{
if (!IsClosed(GetFlag(loc)))
{
return NULL;
}
ASNodeHashMap::iterator it = mClosed.find(loc);
return ( it != mClosed.end() ) ? (it->second) : (NULL);
}
void CAStarEngine::ClearOpen()
{
mOpen.clear();
}
void CAStarEngine::ClearClosed()
{
mClosed.clear();
}
AStarNode* CAStarEngine::GetFreeASNode()
{
AStarNode* ret;
PROFILE_START("allocator");
if (!freeNodes.empty())
{
ret = freeNodes.back();
freeNodes.pop_back();
}
else
{
ret = new AStarNode;
}
usedNodes.push_back(ret);
PROFILE_END("allocator");
return ret;
}
void CAStarEngine::Cleanup()
{
std::vector<AStarNode*>::iterator it;
for( it = usedNodes.begin(); it != usedNodes.end(); it++)
{
freeNodes.push_back(*it);
}
usedNodes.clear();
}
void PriQueue::promote( AStarNode *node )
{
if (node == NULL)
{
return;
}
std::vector<AStarNode*>::iterator ind, first;
for( ind = c.begin(); ind!=c.end() && !((*ind)->equals(*node)); ind++ );
if (ind == c.end())
{
push(node);
return;
}
if( (*ind)->f <= node->f ) return;
first = c.begin();
int index = ind-first;
int parent = (index - 1)/2;
while ( index>0 && (*(first+parent))->f > node->f )
{
*(first+index) = *(first+parent);
index = parent;
parent = (parent - 1)/2;
}
*(first+index) = node;
}
void PriQueue::clear()
{
c.clear();
}
CVector2D TilespaceToWorldspace( const CVector2D &ts )
{
return CVector2D(ts.x*CELL_SIZE+CELL_SIZE/2, ts.y*CELL_SIZE+CELL_SIZE/2);
}
CVector2D WorldspaceToTilespace( const CVector2D &ws )
{
return CVector2D(floor(ws.x/CELL_SIZE), floor(ws.y/CELL_SIZE));
}
void AStarGoalLowLevel::SetDestination( const CVector2D &dest )
{
coord = WorldspaceToTilespace(dest);
}
# Housekeeping and pathfinder enhancements / optimization when dealing with ranged actions. - Modified Xeromyces to no longer automatically convert element and attribute names to lowercase, so that we can have camelCase names. We should now be able to convert all the multi-word entity properties, like pass_through_allies, to camelCase, like passThroughAllies, which is more consistent with the rest of our JavaScript naming conventions. To support the existing code that assumes lowercase element names, I made the getElementID and getAttributeID methods (used in the EL and AT macros) ignore case, and I changed any code that directly accessed element names to use the right case. CEntityTemplate now converts Names_LikeThis to names_likeThis (changing each separate "word" in the name to camelCase). Changed the version letter in XMB filenames from A to B to support this without requiring people to delete old XMBs. - Enhanced the pathfinder's handling of contact paths, resulting in a very large speedup for actions like attacking, construction, etc. The problem was that the pathfinder used to not count a given state as the goal unless it was exactly coincident with the target location. This is fine when you order a unit to go exactly to a certain spot, but if you're ordering a unit to build, gather or attack something, then the target tile is impassable (because your target is there) and therefore the pathfinder never declares a state final. As a result, the pathfinder tries hundreds of extra tiles in case there is a long path that gets to the goal, and after failing to find any path that reaches the goal, it gives you one to the closest point it got to. To fix it, I made the pathfinder take into account a radius around the goal in which it's OK to be, which depends on the size of the target unit and the range of your action. This was SVN commit r4186.
2006-08-01 05:41:21 +02:00
void AStarGoalLowLevel::SetRadius( float r )
# Housekeeping and pathfinder enhancements / optimization when dealing with ranged actions. - Modified Xeromyces to no longer automatically convert element and attribute names to lowercase, so that we can have camelCase names. We should now be able to convert all the multi-word entity properties, like pass_through_allies, to camelCase, like passThroughAllies, which is more consistent with the rest of our JavaScript naming conventions. To support the existing code that assumes lowercase element names, I made the getElementID and getAttributeID methods (used in the EL and AT macros) ignore case, and I changed any code that directly accessed element names to use the right case. CEntityTemplate now converts Names_LikeThis to names_likeThis (changing each separate "word" in the name to camelCase). Changed the version letter in XMB filenames from A to B to support this without requiring people to delete old XMBs. - Enhanced the pathfinder's handling of contact paths, resulting in a very large speedup for actions like attacking, construction, etc. The problem was that the pathfinder used to not count a given state as the goal unless it was exactly coincident with the target location. This is fine when you order a unit to go exactly to a certain spot, but if you're ordering a unit to build, gather or attack something, then the target tile is impassable (because your target is there) and therefore the pathfinder never declares a state final. As a result, the pathfinder tries hundreds of extra tiles in case there is a long path that gets to the goal, and after failing to find any path that reaches the goal, it gives you one to the closest point it got to. To fix it, I made the pathfinder take into account a radius around the goal in which it's OK to be, which depends on the size of the target unit and the range of your action. This was SVN commit r4186.
2006-08-01 05:41:21 +02:00
{
radius = r;
}
float AStarGoalLowLevel::GetRadius()
# Housekeeping and pathfinder enhancements / optimization when dealing with ranged actions. - Modified Xeromyces to no longer automatically convert element and attribute names to lowercase, so that we can have camelCase names. We should now be able to convert all the multi-word entity properties, like pass_through_allies, to camelCase, like passThroughAllies, which is more consistent with the rest of our JavaScript naming conventions. To support the existing code that assumes lowercase element names, I made the getElementID and getAttributeID methods (used in the EL and AT macros) ignore case, and I changed any code that directly accessed element names to use the right case. CEntityTemplate now converts Names_LikeThis to names_likeThis (changing each separate "word" in the name to camelCase). Changed the version letter in XMB filenames from A to B to support this without requiring people to delete old XMBs. - Enhanced the pathfinder's handling of contact paths, resulting in a very large speedup for actions like attacking, construction, etc. The problem was that the pathfinder used to not count a given state as the goal unless it was exactly coincident with the target location. This is fine when you order a unit to go exactly to a certain spot, but if you're ordering a unit to build, gather or attack something, then the target tile is impassable (because your target is there) and therefore the pathfinder never declares a state final. As a result, the pathfinder tries hundreds of extra tiles in case there is a long path that gets to the goal, and after failing to find any path that reaches the goal, it gives you one to the closest point it got to. To fix it, I made the pathfinder take into account a radius around the goal in which it's OK to be, which depends on the size of the target unit and the range of your action. This was SVN commit r4186.
2006-08-01 05:41:21 +02:00
{
return radius;
}
float AStarGoalLowLevel::DistanceToGoal( const CVector2D &loc )
{
return ((coord-loc).Length());
}
bool AStarGoalLowLevel::IsAtGoal( const CVector2D &loc )
{
# Housekeeping and pathfinder enhancements / optimization when dealing with ranged actions. - Modified Xeromyces to no longer automatically convert element and attribute names to lowercase, so that we can have camelCase names. We should now be able to convert all the multi-word entity properties, like pass_through_allies, to camelCase, like passThroughAllies, which is more consistent with the rest of our JavaScript naming conventions. To support the existing code that assumes lowercase element names, I made the getElementID and getAttributeID methods (used in the EL and AT macros) ignore case, and I changed any code that directly accessed element names to use the right case. CEntityTemplate now converts Names_LikeThis to names_likeThis (changing each separate "word" in the name to camelCase). Changed the version letter in XMB filenames from A to B to support this without requiring people to delete old XMBs. - Enhanced the pathfinder's handling of contact paths, resulting in a very large speedup for actions like attacking, construction, etc. The problem was that the pathfinder used to not count a given state as the goal unless it was exactly coincident with the target location. This is fine when you order a unit to go exactly to a certain spot, but if you're ordering a unit to build, gather or attack something, then the target tile is impassable (because your target is there) and therefore the pathfinder never declares a state final. As a result, the pathfinder tries hundreds of extra tiles in case there is a long path that gets to the goal, and after failing to find any path that reaches the goal, it gives you one to the closest point it got to. To fix it, I made the pathfinder take into account a radius around the goal in which it's OK to be, which depends on the size of the target unit and the range of your action. This was SVN commit r4186.
2006-08-01 05:41:21 +02:00
float dx = coord.x - loc.x;
float dy = coord.y - loc.y;
return dx*dx + dy*dy <= radius*radius / (CELL_SIZE*CELL_SIZE); // Scale down radius to tilespace
}
float AStarGoalLowLevel::GetTileCost( const CVector2D& loc1, const CVector2D& loc2 )
{
return (loc2-loc1).Length() - radius;
}
bool AStarGoalLowLevel::IsPassable( const CVector2D &loc, HEntity entity )
{
CTerrain* pTerrain = g_Game->GetWorld()->GetTerrain();
int size = pTerrain->GetTilesPerSide();
if( loc.x<0 || loc.y<0 || loc.x>=size || loc.y>=size )
{
return false;
}
if ( pTerrain->IsPassable(loc, entity) )
{
// If no entity blocking, return true
CVector2D wloc = TilespaceToWorldspace(loc);
CBoundingBox bounds(wloc.x, wloc.y, 0, CELL_SIZE, CELL_SIZE, 3);
if ( GetCollisionObject(&bounds, entity->GetPlayer()) == NULL )
{
return true;
}
}
return false;
}
CVector2D AStarGoalLowLevel::GetCoord( const CVector2D &loc )
{
return TilespaceToWorldspace(loc);
}
CVector2D AStarGoalLowLevel::GetTile( const CVector2D &loc )
{
return WorldspaceToTilespace(loc);
}
std::vector<CVector2D> AStarGoalLowLevel::GetNeighbors( const CVector2D &loc, HEntity entity)
{
std::vector<CVector2D> vec;
for( int xdiff = -1; xdiff <= 1; xdiff++ )
{
for( int ydiff = -1; ydiff <= 1; ydiff++ )
{
if ( xdiff!=0 || ydiff!=0 )
{
CVector2D c = loc;
c.x += xdiff; c.y += ydiff;
if ( IsPassable(c, entity) )
{
vec.push_back(c);
}
}
}
}
return vec;
}
inline AStarNodeFlag* CAStarEngine::GetFlag(const CVector2D &loc)
{
debug_assert(loc.x>=0 && loc.y>=0 && loc.x<mFlagArraySize && loc.y<mFlagArraySize);
return mFlags + (mFlagArraySize * (long)loc.x + (long)loc.y);
}
inline bool CAStarEngine::IsClear(AStarNodeFlag* flag)
{
return (*flag)==kClear;
}
inline bool CAStarEngine::IsClosed(AStarNodeFlag* flag)
{
return ((*flag) & kClosed) != kClear;
}
inline bool CAStarEngine::IsOpen(AStarNodeFlag* flag)
{
return ((*flag) & kOpen) != kClear;
}
inline void CAStarEngine::SetClosedFlag(AStarNodeFlag* flag)
{
*flag |= kClosed;
}
inline void CAStarEngine::SetOpenFlag(AStarNodeFlag* flag)
{
*flag |= kOpen;
}
inline void CAStarEngine::ClearClosedFlag(AStarNodeFlag* flag)
{
*flag &= -kClosed;
}
inline void CAStarEngine::ClearOpenFlag(AStarNodeFlag* flag)
{
*flag &= -kOpen;
}
inline bool CAStarEngine::IsPassable(AStarNodeFlag* flag)
{
return ((*flag) & kPassable) != kClear;
}
inline bool CAStarEngine::IsBlocked(AStarNodeFlag* flag)
{
return ((*flag) & kBlocked) != kClear;
}
inline void CAStarEngine::SetPassableFlag(AStarNodeFlag* flag)
{
*flag |= kPassable;
}
inline void CAStarEngine::SetBlockedFlag(AStarNodeFlag* flag)
{
*flag |= kBlocked;
}