0ad/source/renderer/OverlayRenderer.cpp
Ykkrosh 6bc33fe8bd Update renderer design to be more flexible and data-driven based on material and shader definitions.
Support conditional expressions in shader effect XML files.
Consolidate fixed-function model rendering into the shader system.
Remove lots of now-obsolete renderer code.
Move shader defines from std::map to new class with interned data, for
performance.
Move texture from model into material.
Alleviate singletonitis.
Remove obsolete lodbias setting.
Remove unused terrain shadow transparency.

This was SVN commit r11423.
2012-04-03 18:44:46 +00:00

703 lines
25 KiB
C++

/* Copyright (C) 2011 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "OverlayRenderer.h"
#include "maths/MathUtil.h"
#include "maths/Quaternion.h"
#include "maths/Vector2D.h"
#include "graphics/LOSTexture.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "graphics/TextureManager.h"
#include "lib/ogl.h"
#include "ps/Game.h"
#include "ps/Profile.h"
#include "renderer/Renderer.h"
#include "renderer/VertexBuffer.h"
#include "renderer/VertexBufferManager.h"
#include "simulation2/Simulation2.h"
#include "simulation2/components/ICmpWaterManager.h"
struct OverlayRendererInternals
{
std::vector<SOverlayLine*> lines;
std::vector<SOverlayTexturedLine*> texlines;
std::vector<SOverlaySprite*> sprites;
};
class CTexturedLineRData : public CRenderData
{
public:
CTexturedLineRData(SOverlayTexturedLine* line) :
m_Line(line), m_VB(NULL), m_VBIndices(NULL), m_Raise(.2f)
{ }
~CTexturedLineRData()
{
if (m_VB)
g_VBMan.Release(m_VB);
if (m_VBIndices)
g_VBMan.Release(m_VBIndices);
}
struct SVertex
{
SVertex(CVector3D pos, float u, float v) : m_Position(pos) { m_UVs[0] = u; m_UVs[1] = v; }
CVector3D m_Position;
GLfloat m_UVs[2];
float _padding[3]; // 5 floats up till now, so pad with another 3 floats to get a power of 2
};
cassert(sizeof(SVertex) == 32);
void Update();
/**
* Creates a line cap of the specified type @p endCapType at the end of the segment going in direction @p normal, and appends
* the vertices to @p verticesOut in GL_TRIANGLES order.
*
* @param corner1 One of the two butt-end corner points of the line to which the cap should be attached.
* @param corner2 One of the two butt-end corner points of the line to which the cap should be attached.
* @param normal Normal vector indicating the direction of the segment to which the cap should be attached.
* @param endCapType The type of end cap to produce.
* @param verticesOut Output vector of vertices for passing to the renderer.
* @param indicesOut Output vector of vertex indices for passing to the renderer.
*/
void CreateLineCap(const CVector3D& corner1, const CVector3D& corner2, const CVector3D& normal,
SOverlayTexturedLine::LineCapType endCapType, std::vector<SVertex>& verticesOut, std::vector<u16>& indicesOut);
/// Small utility function; grabs the centroid of the positions of two vertices
inline CVector3D Centroid(const SVertex& v1, const SVertex& v2)
{
return (v1.m_Position + v2.m_Position) * 0.5;
}
SOverlayTexturedLine* m_Line;
CVertexBuffer::VBChunk* m_VB;
CVertexBuffer::VBChunk* m_VBIndices;
float m_Raise; // small vertical offset of line from terrain to prevent visual glitches
};
OverlayRenderer::OverlayRenderer()
{
m = new OverlayRendererInternals();
}
OverlayRenderer::~OverlayRenderer()
{
delete m;
}
void OverlayRenderer::Submit(SOverlayLine* line)
{
ENSURE(line->m_Coords.size() % 3 == 0);
m->lines.push_back(line);
}
void OverlayRenderer::Submit(SOverlayTexturedLine* line)
{
// Simplify the rest of the code by guaranteeing non-empty lines
if (line->m_Coords.empty())
return;
ENSURE(line->m_Coords.size() % 2 == 0);
m->texlines.push_back(line);
}
void OverlayRenderer::Submit(SOverlaySprite* overlay)
{
m->sprites.push_back(overlay);
}
void OverlayRenderer::EndFrame()
{
m->lines.clear();
m->texlines.clear();
m->sprites.clear();
// this should leave the capacity unchanged, which is okay since it
// won't be very large or very variable
}
void OverlayRenderer::PrepareForRendering()
{
PROFILE3("prepare overlays");
// This is where we should do something like sort the overlays by
// colour/sprite/etc for more efficient rendering
for (size_t i = 0; i < m->texlines.size(); ++i)
{
SOverlayTexturedLine* line = m->texlines[i];
if (!line->m_RenderData)
{
line->m_RenderData = shared_ptr<CRenderData>(new CTexturedLineRData(line));
static_cast<CTexturedLineRData*>(line->m_RenderData.get())->Update();
// We assume the overlay line will get replaced by the caller
// if terrain changes, so we don't need to detect that here and
// call Update again. Also we assume the caller won't change
// any of the parameters after first submitting the line.
}
}
}
void OverlayRenderer::RenderOverlaysBeforeWater()
{
PROFILE3_GPU("overlays (before)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderOverlaysBeforeWater for GLES
#else
pglActiveTextureARB(GL_TEXTURE0);
glDisable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
for (size_t i = 0; i < m->lines.size(); ++i)
{
SOverlayLine* line = m->lines[i];
if (line->m_Coords.empty())
continue;
ENSURE(line->m_Coords.size() % 3 == 0);
glColor4fv(line->m_Color.FloatArray());
glLineWidth((float)line->m_Thickness);
glInterleavedArrays(GL_V3F, sizeof(float)*3, &line->m_Coords[0]);
glDrawArrays(GL_LINE_STRIP, 0, (GLsizei)line->m_Coords.size()/3);
}
glDisableClientState(GL_VERTEX_ARRAY);
glLineWidth(1.f);
glDisable(GL_BLEND);
#endif
}
void OverlayRenderer::RenderOverlaysAfterWater()
{
PROFILE3_GPU("overlays (after)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderOverlaysAfterWater for GLES
return;
#endif
ogl_WarnIfError();
if (!m->texlines.empty())
{
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDepthMask(0);
const char* shaderName;
if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
shaderName = "overlayline";
else
shaderName = "fixed:overlayline";
CShaderDefines defAlwaysVisible;
defAlwaysVisible.Add("IGNORE_LOS", "1");
CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture();
CShaderManager& shaderManager = g_Renderer.GetShaderManager();
CShaderProgramPtr shaderTexLineNormal(shaderManager.LoadProgram(shaderName, CShaderDefines()));
CShaderProgramPtr shaderTexLineAlwaysVisible(shaderManager.LoadProgram(shaderName, defAlwaysVisible));
// ----------------------------------------------------------------------------------------
shaderTexLineNormal->Bind();
shaderTexLineNormal->BindTexture("losTex", los.GetTexture());
shaderTexLineNormal->Uniform("losTransform", los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// batch render only the non-always-visible overlay lines using the normal shader
RenderTexturedOverlayLines(shaderTexLineNormal, false);
shaderTexLineNormal->Unbind();
// ----------------------------------------------------------------------------------------
shaderTexLineAlwaysVisible->Bind();
// TODO: losTex and losTransform are unused in the always visible shader, but I'm not sure if it's worthwhile messing
// with it just to remove these calls
shaderTexLineAlwaysVisible->BindTexture("losTex", los.GetTexture());
shaderTexLineAlwaysVisible->Uniform("losTransform", los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
// batch render only the always-visible overlay lines using the LoS-ignored shader
RenderTexturedOverlayLines(shaderTexLineAlwaysVisible, true);
shaderTexLineAlwaysVisible->Unbind();
// TODO: the shader should probably be responsible for unbinding its textures
g_Renderer.BindTexture(1, 0);
g_Renderer.BindTexture(0, 0);
CVertexBuffer::Unbind();
glDepthMask(1);
glDisable(GL_BLEND);
}
}
void OverlayRenderer::RenderTexturedOverlayLines(CShaderProgramPtr shaderTexLine, bool alwaysVisible)
{
int streamflags = shaderTexLine->GetStreamFlags();
for (size_t i = 0; i < m->texlines.size(); ++i)
{
SOverlayTexturedLine* line = m->texlines[i];
// render only those lines matching the requested alwaysVisible status
if (!line->m_RenderData || line->m_AlwaysVisible != alwaysVisible)
continue;
shaderTexLine->BindTexture("baseTex", line->m_TextureBase->GetHandle());
shaderTexLine->BindTexture("maskTex", line->m_TextureMask->GetHandle());
shaderTexLine->Uniform("objectColor", line->m_Color);
CTexturedLineRData* rdata = static_cast<CTexturedLineRData*>(line->m_RenderData.get());
if (!rdata->m_VB || !rdata->m_VBIndices)
continue; // might have failed to allocate
// -- render main line quad strip ----------------------
GLsizei stride = sizeof(CTexturedLineRData::SVertex);
CTexturedLineRData::SVertex* vertexBase = reinterpret_cast<CTexturedLineRData::SVertex*>(rdata->m_VB->m_Owner->Bind());
if (streamflags & STREAM_POS)
shaderTexLine->VertexPointer(3, GL_FLOAT, stride, &vertexBase->m_Position[0]);
if (streamflags & STREAM_UV0)
shaderTexLine->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, stride, &vertexBase->m_UVs[0]);
if (streamflags & STREAM_UV1)
shaderTexLine->TexCoordPointer(GL_TEXTURE1, 2, GL_FLOAT, stride, &vertexBase->m_UVs[0]);
u8* indexBase = rdata->m_VBIndices->m_Owner->Bind();
shaderTexLine->AssertPointersBound();
glDrawElements(GL_TRIANGLES, rdata->m_VBIndices->m_Count, GL_UNSIGNED_SHORT, indexBase + sizeof(u16)*rdata->m_VBIndices->m_Index);
g_Renderer.GetStats().m_OverlayTris += rdata->m_VBIndices->m_Count/3;
}
}
void OverlayRenderer::RenderForegroundOverlays(const CCamera& viewCamera)
{
PROFILE3_GPU("overlays (fg)");
#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderForegroundOverlays for GLES
#else
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
CVector3D right = -viewCamera.m_Orientation.GetLeft();
CVector3D up = viewCamera.m_Orientation.GetUp();
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
float uvs[8] = { 0,0, 1,0, 1,1, 0,1 };
glTexCoordPointer(2, GL_FLOAT, sizeof(float)*2, &uvs);
for (size_t i = 0; i < m->sprites.size(); ++i)
{
SOverlaySprite* sprite = m->sprites[i];
sprite->m_Texture->Bind();
CVector3D pos[4] = {
sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y0,
sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y0,
sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y1,
sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y1
};
glVertexPointer(3, GL_FLOAT, sizeof(float)*3, &pos[0].X);
glDrawArrays(GL_QUADS, 0, (GLsizei)4);
}
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);
#endif
}
void CTexturedLineRData::Update()
{
if (m_VB)
{
g_VBMan.Release(m_VB);
m_VB = NULL;
}
if (m_VBIndices)
{
g_VBMan.Release(m_VBIndices);
m_VBIndices = NULL;
}
CTerrain* terrain = m_Line->m_Terrain;
CmpPtr<ICmpWaterManager> cmpWaterManager(*g_Game->GetSimulation2(), SYSTEM_ENTITY);
float v = 0.f;
std::vector<SVertex> vertices;
std::vector<u16> indices;
size_t n = m_Line->m_Coords.size() / 2; // number of line points
bool closed = m_Line->m_Closed;
ENSURE(n >= 2); // minimum needed to avoid errors (also minimum value to make sense, can't draw a line between 1 point)
// In each iteration, p1 is the position of vertex i, p0 is i-1, p2 is i+1.
// To avoid slightly expensive terrain computations we cycle these around and
// recompute p2 at the end of each iteration.
CVector3D p0;
CVector3D p1(m_Line->m_Coords[0], 0, m_Line->m_Coords[1]);
CVector3D p2(m_Line->m_Coords[(1 % n)*2], 0, m_Line->m_Coords[(1 % n)*2+1]);
if (closed)
// grab the ending point so as to close the loop
p0 = CVector3D(m_Line->m_Coords[(n-1)*2], 0, m_Line->m_Coords[(n-1)*2+1]);
else
// we don't want to loop around and use the direction towards the other end of the line, so create an artificial p0 that
// extends the p2 -> p1 direction, and use that point instead
p0 = p1 + (p1 - p2);
bool p1floating = false;
bool p2floating = false;
// Compute terrain heights, clamped to the water height (and remember whether
// each point was floating on water, for normal computation later)
// TODO: if we ever support more than one water level per map, recompute this per point
float w = cmpWaterManager->GetExactWaterLevel(p0.X, p0.Z);
p0.Y = terrain->GetExactGroundLevel(p0.X, p0.Z);
if (p0.Y < w)
p0.Y = w;
p1.Y = terrain->GetExactGroundLevel(p1.X, p1.Z);
if (p1.Y < w)
{
p1.Y = w;
p1floating = true;
}
p2.Y = terrain->GetExactGroundLevel(p2.X, p2.Z);
if (p2.Y < w)
{
p2.Y = w;
p2floating = true;
}
for (size_t i = 0; i < n; ++i)
{
// For vertex i, compute bisector of lines (i-1)..(i) and (i)..(i+1)
// perpendicular to terrain normal
// Normal is vertical if on water, else computed from terrain
CVector3D norm;
if (p1floating)
norm = CVector3D(0, 1, 0);
else
norm = m_Line->m_Terrain->CalcExactNormal(p1.X, p1.Z);
CVector3D b = ((p1 - p0).Normalized() + (p2 - p1).Normalized()).Cross(norm);
// Adjust bisector length to match the line thickness, along the line's width
float l = b.Dot((p2 - p1).Normalized().Cross(norm));
if (fabs(l) > 0.000001f) // avoid unlikely divide-by-zero
b *= m_Line->m_Thickness / l;
// Push vertices and indices in GL_TRIANGLES order
//
// NOTE: in order for OpenGL to successfully render these, the winding order needs to be correct. Basically, it means
// that every pair of triangles sharing a side must specify the vertices of that side in the opposite order from the
// other triangle.
// (see http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/node16.html for an illustration)
//
// What the code below does is push the indices for a quad composed of two triangles in each iteration. The two triangles
// of each quad are indexed using the winding orders (BR, BL, TR) and (TR, BL, TR) (where BR is bottom-right of this
// iteration's quad, TR top-right etc).
SVertex vertex1(p1 + b + norm*m_Raise, 0.f, v);
SVertex vertex2(p1 - b + norm*m_Raise, 1.f, v);
vertices.push_back(vertex1);
vertices.push_back(vertex2);
u16 index1 = vertices.size() - 2; // index of vertex1 in this iteration (TR of this quad)
u16 index2 = vertices.size() - 1; // index of the vertex2 in this iteration (TL of this quad)
if (i == 0)
{
// initial two vertices to continue building triangles from (n must be >= 2 for this to work)
indices.push_back(index1);
indices.push_back(index2);
}
else
{
u16 index1Prev = vertices.size() - 4; // index of the vertex1 in the previous iteration (BR of this quad)
u16 index2Prev = vertices.size() - 3; // index of the vertex2 in the previous iteration (BL of this quad)
ENSURE(index1Prev < vertices.size());
ENSURE(index2Prev < vertices.size());
// Add two corner points from last iteration and join with one of our own corners to create triangle 1
// (don't need to do this if i == 1 because i == 0 are the first two ones, they don't need to be copied)
if (i > 1)
{
indices.push_back(index1Prev);
indices.push_back(index2Prev);
}
indices.push_back(index1); // complete triangle 1
// create triangle 2, specifying the adjacent side's vertices in the opposite order from triangle 1
indices.push_back(index1);
indices.push_back(index2Prev);
indices.push_back(index2);
}
// alternate V coordinate for debugging
v = 1 - v;
// cycle the p's and compute the new p2
p0 = p1;
p1 = p2;
p1floating = p2floating;
// if in closed mode, wrap around the coordinate array for p2 -- otherwise, extend linearly
if (!closed && i == n-2)
// next iteration is the last point of the line, so create an artificial p2 that extends the p0 -> p1 direction
p2 = p1 + (p1 - p0);
else
p2 = CVector3D(m_Line->m_Coords[((i+2) % n)*2], 0, m_Line->m_Coords[((i+2) % n)*2+1]);
p2.Y = terrain->GetExactGroundLevel(p2.X, p2.Z);
if (p2.Y < w)
{
p2.Y = w;
p2floating = true;
}
else
p2floating = false;
}
if (closed)
{
// close the path
indices.push_back(vertices.size()-2);
indices.push_back(vertices.size()-1);
indices.push_back(0);
indices.push_back(0);
indices.push_back(vertices.size()-1);
indices.push_back(1);
}
else
{
// Create start and end caps. On either end, this is done by taking the centroid between the last and second-to-last pair of
// vertices that was generated along the path (i.e. the vertex1's and vertex2's from above), taking a directional vector
// between them, and drawing the line cap in the plane given by the two butt-end corner points plus said vector.
std::vector<u16> capIndices;
std::vector<SVertex> capVertices;
// create end cap
CreateLineCap(
// the order of these vertices is important here, swapping them produces caps at the wrong side
vertices[vertices.size()-2].m_Position, // top-right vertex of last quad
vertices[vertices.size()-1].m_Position, // top-left vertex of last quad
// directional vector between centroids of last vertex pair and second-to-last vertex pair
(Centroid(vertices[vertices.size()-2], vertices[vertices.size()-1]) - Centroid(vertices[vertices.size()-4], vertices[vertices.size()-3])).Normalized(),
m_Line->m_EndCapType,
capVertices,
capIndices
);
for (unsigned i = 0; i < capIndices.size(); i++)
capIndices[i] += vertices.size();
vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
indices.insert(indices.end(), capIndices.begin(), capIndices.end());
capIndices.clear();
capVertices.clear();
// create start cap
CreateLineCap(
// the order of these vertices is important here, swapping them produces caps at the wrong side
vertices[1].m_Position,
vertices[0].m_Position,
// directional vector between centroids of first vertex pair and second vertex pair
(Centroid(vertices[1], vertices[0]) - Centroid(vertices[3], vertices[2])).Normalized(),
m_Line->m_StartCapType,
capVertices,
capIndices
);
for (unsigned i = 0; i < capIndices.size(); i++)
capIndices[i] += vertices.size();
vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
indices.insert(indices.end(), capIndices.begin(), capIndices.end());
}
ENSURE(indices.size() % 3 == 0); // GL_TRIANGLES indices, so must be multiple of 3
m_VB = g_VBMan.Allocate(sizeof(SVertex), vertices.size(), GL_STATIC_DRAW, GL_ARRAY_BUFFER);
if (m_VB)
{
// allocation might fail (e.g. due to too many vertices)
m_VB->m_Owner->UpdateChunkVertices(m_VB, &vertices[0]); // copy data into VBO
for (size_t k = 0; k < indices.size(); ++k)
indices[k] += m_VB->m_Index;
m_VBIndices = g_VBMan.Allocate(sizeof(u16), indices.size(), GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER);
if (m_VBIndices)
m_VBIndices->m_Owner->UpdateChunkVertices(m_VBIndices, &indices[0]);
}
}
void CTexturedLineRData::CreateLineCap(const CVector3D& corner1, const CVector3D& corner2, const CVector3D& lineDirectionNormal,
SOverlayTexturedLine::LineCapType endCapType, std::vector<SVertex>& verticesOut,
std::vector<u16>& indicesOut)
{
if (endCapType == SOverlayTexturedLine::LINECAP_FLAT)
return; // no action needed, this is the default
// When not in closed mode, we've created artificial points for the start- and endpoints that extend the line in the
// direction of the first and the last segment, respectively. Thus, we know both the start and endpoints have perpendicular
// butt endings, i.e. the end corner vertices on either side of the line extend perpendicularly from the segment direction.
// That is to say, when viewed from the top, we will have something like
// .
// this: and not like this: /|
// ____. / |
// | / .
// | /
// ____. /
//
int roundCapPoints = 8; // amount of points to sample along the semicircle for rounded caps (including corner points)
float radius = m_Line->m_Thickness;
CVector3D centerPoint = (corner1 + corner2) * 0.5f;
SVertex centerVertex(centerPoint, 0.5f, 0.5f);
u16 indexOffset = verticesOut.size(); // index offset in verticesOut from where we start adding our vertices
switch (endCapType)
{
case SOverlayTexturedLine::LINECAP_SHARP:
{
roundCapPoints = 3; // creates only one point directly ahead
radius *= 1.5f; // make it a bit sharper (note that we don't use the radius for the butt-end corner points so it should be ok)
centerVertex.m_UVs[0] = 0.480f; // slight visual correction to make the texture match up better at the corner points
}
// fall-through
case SOverlayTexturedLine::LINECAP_ROUND:
{
// Draw a rounded line cap in the 3D plane of the line specified by the two corner points and the normal vector of the
// line's direction. The terrain normal at the centroid between the two corner points is perpendicular to this plane.
// The way this works is by taking a vector from the corner points' centroid to one of the corner points (which is then
// of radius length), and rotate it around the terrain normal vector in that centroid. This will rotate the vector in
// the line's plane, producing the desired rounded cap.
// To please OpenGL's winding order, this angle needs to be negated depending on whether we start rotating from
// the (center -> corner1) or (center -> corner2) vector. For the (center -> corner2) vector, we apparently need to use
// the negated angle.
float stepAngle = -(float)(M_PI/(roundCapPoints-1));
// Push the vertices in triangle fan order (easy to generate GL_TRIANGLES indices for afterwards)
// Note that we're manually adding the corner vertices instead of having them be generated by the rotating vector.
// This is because we want to support an overly large radius to make the sharp line ending look sharper.
verticesOut.push_back(centerVertex);
verticesOut.push_back(SVertex(corner2, 0.f, 0.f));
// Get the base vector that we will incrementally rotate in the cap plane to produce the radial sample points.
// Normally corner2 - centerPoint would suffice for this since it is of radius length, but we want to support custom
// radii to support tuning the 'sharpness' of sharp end caps (see above)
CVector3D rotationBaseVector = (corner2 - centerPoint).Normalized() * radius;
// Calculate the normal vector of the plane in which we're going to be drawing the line cap. This is the vector that
// is perpendicular to both baseVector and the 'lineDirectionNormal' vector indicating the direction of the line.
// Note that we shouldn't use terrain->CalcExactNormal() here because if the line is being rendered on top of water,
// then CalcExactNormal will return the normal vector of the terrain that's underwater (which can be quite funky).
CVector3D capPlaneNormal = lineDirectionNormal.Cross(rotationBaseVector).Normalized();
for (int i = 1; i < roundCapPoints - 1; ++i)
{
// Rotate the centerPoint -> corner vector by i*stepAngle radians around the cap plane normal at the center point.
CQuaternion quatRotation;
quatRotation.FromAxisAngle(capPlaneNormal, i * stepAngle);
CVector3D worldPos3D = centerPoint + quatRotation.Rotate(rotationBaseVector);
// Let v range from 0 to 1 as we move along the semi-circle, keep u fixed at 0 (i.e. curve the left vertical edge
// of the texture around the edge of the semicircle)
float u = 0.f;
float v = clamp((i/(float)(roundCapPoints-1)), 0.f, 1.f); // pos, u, v
verticesOut.push_back(SVertex(worldPos3D, u, v));
}
// connect back to the other butt-end corner point to complete the semicircle
verticesOut.push_back(SVertex(corner1, 0.f, 1.f));
// now push indices in GL_TRIANGLES order; vertices[indexOffset] is the center vertex, vertices[indexOffset + 1] is the
// first corner point, then a bunch of radial samples, and then at the end we have the other corner point again. So:
for (int i=1; i < roundCapPoints; ++i)
{
indicesOut.push_back(indexOffset); // center vertex
indicesOut.push_back(indexOffset + i);
indicesOut.push_back(indexOffset + i + 1);
}
}
break;
case SOverlayTexturedLine::LINECAP_SQUARE:
{
// Extend the (corner1 -> corner2) vector along the direction normal and draw a square line ending consisting of
// three triangles (sort of like a triangle fan)
// NOTE: The order in which the vertices are pushed out determines the visibility, as they
// are rendered only one-sided; the wrong order of vertices will make the cap visible only from the bottom.
verticesOut.push_back(centerVertex);
verticesOut.push_back(SVertex(corner2, 0.f, 0.f));
verticesOut.push_back(SVertex(corner2 + (lineDirectionNormal * (m_Line->m_Thickness)), 0.f, 0.33333f)); // extend butt corner point 2 along the normal vector
verticesOut.push_back(SVertex(corner1 + (lineDirectionNormal * (m_Line->m_Thickness)), 0.f, 0.66666f)); // extend butt corner point 1 along the normal vector
verticesOut.push_back(SVertex(corner1, 0.f, 1.0f)); // push butt corner point 1
for (int i=1; i < 4; ++i)
{
indicesOut.push_back(indexOffset); // center point
indicesOut.push_back(indexOffset + i);
indicesOut.push_back(indexOffset + i + 1);
}
}
break;
default:
break;
}
}