0ad/source/simulation/PathfindEngine.cpp
Ykkrosh 35e91718c5 # Added tool for viewing models and animations outside the game.
Atlas: Added ActorViewer. Moved GL canvas into separate class for shared
use. Disabled message-handling callback while blocked on the game, and
stopped creating dialog boxes inside the game thread in order to avoid
deadlocks (hopefully). Support multiple Views (for independent sets of
camera/update/render code). Recalculate territory boundaries when
necessary. Changed default list of animations to match those currently
used by actors.
# Tidied up more code.
Moved some more #includes out of .h files, to minimise unnecessary
compilation.
MathUtil: Deleted unused/unuseful macros (M_PI (use PI instead), M_PI_2
(use PI/2), MAX3, ABS (use abs)).
ObjectManager: Removed some ScEd-specific things.
Unit: Moved creation out of UnitManager, so units can be created without
adding to the manager. Changed CStr8 to the more conventional CStr.
app_hooks: Removed warning for setting multiple times.
win: Restored SEH catcher.
GameSetup, GameView: Removed RenderNoCull, because it doesn't seem to do
what it says it does ("force renderer to load everything") since we're
loading-on-demand most stuff and it doesn't seem especially useful since
we'd prefer to minimise loading times (but feel free to correct me if
I'm wrong). (And because it crashes when things need to be initialised
in a different order, so it's easier to remove than to understand and
fix it.)
PatchRData, Renderer: Work sensibly when there's no game (hence no LOS
manager, water, etc).
LOSManager: Use entity position instead of actor position when possible.
TerritoryManager: Allow delayed recalculations (so Atlas can issue lots
of move+recalculate commands per frame).
Cinematic: Non-pointer wxTimer, so it doesn't leak and doesn't have to
be deleted manually.

This was SVN commit r4261.
2006-08-28 17:36:42 +00:00

110 lines
3.7 KiB
C++

#include "precompiled.h"
#include "ps/Profile.h"
#include "EntityOrders.h"
#include "Entity.h"
#include "EntityTemplate.h"
#include "PathfindEngine.h"
CPathfindEngine::CPathfindEngine()
{
}
void CPathfindEngine::requestPath( HEntity entity, const CVector2D& destination )
{
/* TODO: Add code to generate high level path
For now, just the one high level waypoint to the final
destination is added
*/
CEntityOrder waypoint;
waypoint.m_type = CEntityOrder::ORDER_GOTO_WAYPOINT;
waypoint.m_data[0].location = destination;
*((float*)&waypoint.m_data[0].data) = 0.0f;
entity->m_orderQueue.push_front( waypoint );
}
void CPathfindEngine::requestLowLevelPath( HEntity entity, const CVector2D& destination, bool UNUSED(contact), float radius )
{
PROFILE_START("Pathfinding");
CVector2D source( entity->m_position.X, entity->m_position.Z );
if ( mLowPathfinder.findPath(source, destination, entity->m_player, radius) )
{
std::vector<CVector2D> path = mLowPathfinder.getLastPath();
if( path.size() > 0 )
{
// Push the path onto the front of our order queue in reverse order,
// so that we run through it before continuing other orders.
CEntityOrder node;
// Hack to make pathfinding slightly more precise:
// If the radius was 0, make the final node be exactly at the destination
// (otherwise, go to wherever the pathfinder tells us since we just want to be in range)
CVector2D finalDest = (radius==0 ? destination : path[path.size()-1]);
node.m_type = CEntityOrder::ORDER_PATH_END_MARKER; // push end marker (used as a sentinel when repathing)
node.m_data[0].location = finalDest;
entity->m_orderQueue.push_front(node);
node.m_type = CEntityOrder::ORDER_GOTO_NOPATHING; // push final goto step
node.m_data[0].location = finalDest;
entity->m_orderQueue.push_front(node);
for( int i = ((int) path.size()) - 2; i >= 0; i-- )
{
node.m_type = CEntityOrder::ORDER_GOTO_NOPATHING; // TODO: For non-contact paths, do we want some other order type?
node.m_data[0].location = path[i];
entity->m_orderQueue.push_front(node);
}
}
else {
// Hack to make pathfinding slightly more precise:
// If radius = 0, we have an empty path but the user still wants us to move
// within the same tile, so add a GOTO order anyway
if(radius == 0)
{
CEntityOrder node;
node.m_type = CEntityOrder::ORDER_PATH_END_MARKER;
node.m_data[0].location = destination;
entity->m_orderQueue.push_front(node);
node.m_type = CEntityOrder::ORDER_GOTO_NOPATHING;
node.m_data[0].location = destination;
entity->m_orderQueue.push_front(node);
}
}
}
else
{
// If no path was found, then unsolvable
// TODO: Figure out what to do in this case
}
PROFILE_END("Pathfinding");
}
void CPathfindEngine::requestContactPath( HEntity entity, CEntityOrder* current, float range )
{
/* TODO: Same as non-contact: need high-level planner */
CEntityOrder waypoint;
waypoint.m_type = CEntityOrder::ORDER_GOTO_WAYPOINT_CONTACT;
waypoint.m_data[0].location = current->m_data[0].entity->m_position;
*((float*)&waypoint.m_data[0].data) = std::max( current->m_data[0].entity->m_bounds->m_radius, range );
entity->m_orderQueue.push_front( waypoint );
//pathSparse( entity, current->m_data[0].entity->m_position );
//// For attack orders, do some additional postprocessing (replace goto/nopathing
//// with attack/nopathing, up until the attack order marker)
//std::deque<CEntityOrder>::iterator it;
//for( it = entity->m_orderQueue.begin(); it != entity->m_orderQueue.end(); it++ )
//{
// if( it->m_type == CEntityOrder::ORDER_PATH_END_MARKER )
// break;
// if( it->m_type == CEntityOrder::ORDER_GOTO_NOPATHING )
// {
// *it = *current;
// }
//}
}