0ad/source/graphics/ObjectBase.cpp
prefect 04650efe7a Lots of gcc -Wall fixes. The common ones:
- switch() statements don't handle all values in an enum
- missing \n at end of file
- non-virtual destructors in classes containing virtual functions
- order of initializers in constructor initializer lists
... some other stuff (signedness, nested comments, unused variables) as
well.

This was SVN commit r2864.
2005-10-07 15:24:29 +00:00

335 lines
9.1 KiB
C++

#include "precompiled.h"
#include "ObjectBase.h"
#include "ObjectManager.h"
#include "XML/Xeromyces.h"
#include "CLogger.h"
#define LOG_CATEGORY "graphics"
CObjectBase::CObjectBase()
{
m_Properties.m_CastShadows = true;
m_Properties.m_AutoFlatten = false;
}
bool CObjectBase::Load(const char* filename)
{
m_Variants.clear();
CStr filePath ("art/actors/");
filePath += filename;
CXeromyces XeroFile;
if (XeroFile.Load(filePath) != PSRETURN_OK)
return false;
m_Name = filename;
// Use the filename for the model's name
m_ShortName = CStr(filename).AfterLast("/").BeforeLast(".xml");
// Define all the elements used in the XML file
#define EL(x) int el_##x = XeroFile.getElementID(#x)
#define AT(x) int at_##x = XeroFile.getAttributeID(#x)
EL(actor);
//EL(castshadow);
EL(material);
EL(group);
EL(variant);
EL(animations);
EL(animation);
EL(props);
EL(prop);
EL(mesh);
EL(texture);
EL(colour);
AT(file);
AT(name);
AT(speed);
AT(event);
AT(load);
AT(attachpoint);
AT(actor);
AT(frequency);
#undef AT
#undef EL
XMBElement root = XeroFile.getRoot();
if (root.getNodeName() != el_actor)
{
LOG(ERROR, LOG_CATEGORY, "Invalid actor format (unrecognised root element '%s')", XeroFile.getElementString(root.getNodeName()).c_str());
return false;
}
// Set up the vector<vector<T>> m_Variants to contain the right number
// of elements, to avoid wasteful copying/reallocation later.
{
// Count the variants in each group
std::vector<int> variantSizes;
XERO_ITER_EL(root, child)
{
if (child.getNodeName() == el_group)
{
variantSizes.push_back(0);
XERO_ITER_EL(child, variant)
++variantSizes.back();
}
}
m_Variants.resize(variantSizes.size());
// Set each vector to match the number of variants
for (size_t i = 0; i < variantSizes.size(); ++i)
m_Variants[i].resize(variantSizes[i]);
}
// (This XML-reading code is rather worryingly verbose...)
std::vector<std::vector<Variant> >::iterator currentGroup = m_Variants.begin();
XERO_ITER_EL(root, child)
{
int child_name = child.getNodeName();
if (child_name == el_group)
{
std::vector<Variant>::iterator currentVariant = currentGroup->begin();
XERO_ITER_EL(child, variant)
{
debug_assert(variant.getNodeName() == el_variant);
XERO_ITER_ATTR(variant, attr)
{
if (attr.Name == at_name)
currentVariant->m_VariantName = attr.Value;
else if (attr.Name == at_frequency)
currentVariant->m_Frequency = CStr(attr.Value).ToInt();
}
XERO_ITER_EL(variant, option)
{
int option_name = option.getNodeName();
if (option_name == el_mesh)
currentVariant->m_ModelFilename = "art/meshes/" + CStr(option.getText());
else if (option_name == el_texture)
currentVariant->m_TextureFilename = "art/textures/skins/" + CStr(option.getText());
else if (option_name == el_colour)
currentVariant->m_Color = option.getText();
else if (option_name == el_animations)
{
XERO_ITER_EL(option, anim_element)
{
debug_assert(anim_element.getNodeName() == el_animation);
Anim anim;
XERO_ITER_ATTR(anim_element, ae)
{
if (ae.Name == at_name)
anim.m_AnimName = ae.Value;
else if (ae.Name == at_file)
anim.m_FileName = "art/animation/" + CStr(ae.Value);
else if (ae.Name == at_speed)
{
anim.m_Speed = CStr(ae.Value).ToInt() / 100.f;
if (anim.m_Speed <= 0.0) anim.m_Speed = 1.0f;
}
else if (ae.Name == at_event)
{
anim.m_ActionPos = CStr(ae.Value).ToDouble();
if (anim.m_ActionPos < 0.0) anim.m_ActionPos = 0.0;
else if (anim.m_ActionPos > 100.0) anim.m_ActionPos = 1.0;
else if (anim.m_ActionPos > 1.0) anim.m_ActionPos /= 100.0;
}
else if (ae.Name == at_load)
{
anim.m_ActionPos2 = CStr(ae.Value).ToDouble();
if (anim.m_ActionPos2 < 0.0) anim.m_ActionPos2 = 0.0;
else if (anim.m_ActionPos2 > 100.0) anim.m_ActionPos2 = 1.0;
else if (anim.m_ActionPos2 > 1.0) anim.m_ActionPos2 /= 100.0;
}
else
; // unrecognised element
}
currentVariant->m_Anims.push_back(anim);
}
}
else if (option_name == el_props)
{
XERO_ITER_EL(option, prop_element)
{
debug_assert(prop_element.getNodeName() == el_prop);
Prop prop;
XERO_ITER_ATTR(prop_element, pe)
{
if (pe.Name == at_attachpoint)
prop.m_PropPointName = pe.Value;
else if (pe.Name == at_actor)
prop.m_ModelName = pe.Value;
else
; // unrecognised element
}
currentVariant->m_Props.push_back(prop);
}
}
else
; // unrecognised element
}
++currentVariant;
}
if (currentGroup->size() == 0)
{
LOG(ERROR, LOG_CATEGORY, "Actor group has zero variants ('%s')", filename);
}
++currentGroup;
}
else if (child_name == el_material)
{
m_Material = "art/materials/" + CStr(child.getText());
}
else
; // unrecognised element
// TODO: castshadow, etc
}
return true;
}
void CObjectBase::CalculateVariation(std::set<CStr>& strings, variation_key& choices)
{
// Calculate a complete list of choices, one per group. In each group,
// if one of the variants has a name matching a string in 'strings', use
// that one. If more than one matches, choose randomly from those matching
// ones. If none match, choose randomly from all variants.
//
// When choosing randomly, make use of each variant's frequency. If all
// variants have frequency 0, treat them as if they were 1.
choices.clear();
for (std::vector<std::vector<CObjectBase::Variant> >::iterator grp = m_Variants.begin();
grp != m_Variants.end();
++grp)
{
// Ignore groups with nothing inside. (A warning will have been
// emitted by the loading code.)
if (grp->size() == 0)
continue;
// If there's only a single variant, choose that one
if (grp->size() == 1)
{
choices.push_back(0);
continue;
}
// Determine the variants that match the provided strings:
std::vector<u8> matches;
typedef std::vector<u8>::const_iterator Iter;
debug_assert(grp->size() < 256); // else they won't fit in the vector
for (uint i = 0; i < grp->size(); ++i)
if (strings.count((*grp)[i].m_VariantName))
matches.push_back((u8)i); // "protected" by debug_assert
// If there's only one match, choose that one
if (matches.size() == 1)
{
choices.push_back(matches[0]);
continue;
}
// Otherwise, choose randomly from the others.
// If none matched the specified strings, choose from all the variants
if (matches.size() == 0)
for (uint i = 0; i < grp->size(); ++i)
matches.push_back((u8)i); // "protected" by debug_assert
// Sum the frequencies:
int totalFreq = 0;
for (Iter it = matches.begin(); it != matches.end(); ++it)
totalFreq += (*grp)[*it].m_Frequency;
// Someone might be silly and set all variants to have freq==0, in
// which case we just pretend they're all 1
bool allZero = false;
if (totalFreq == 0)
{
totalFreq = (int)matches.size();
allZero = true;
}
// Choose a random number in the interval [0..totalFreq).
// (It shouldn't be necessary to use a network-synchronised RNG,
// since actors are meant to have purely visual manifestations.)
int randNum = (int)( ((float)rand() / RAND_MAX) * totalFreq );
debug_assert(randNum < totalFreq);
// and use that to choose one of the variants
for (Iter it = matches.begin(); it != matches.end(); ++it)
{
randNum -= (allZero ? 1 : (*grp)[*it].m_Frequency);
if (randNum < 0)
{
choices.push_back(*it);
break;
}
}
debug_assert(randNum < 0);
// This should always happen; otherwise it
// wouldn't have chosen any of the variants.
}
debug_assert(choices.size() == m_Variants.size());
// Also, make choices for all props:
// Work out which props have been chosen
std::map<CStr, CStr> chosenProps;
CObjectBase::variation_key::const_iterator choice_it = choices.begin();
for (std::vector<std::vector<CObjectBase::Variant> >::iterator grp = m_Variants.begin();
grp != m_Variants.end();
++grp)
{
CObjectBase::Variant& var (grp->at(*(choice_it++)));
for (std::vector<CObjectBase::Prop>::iterator it = var.m_Props.begin(); it != var.m_Props.end(); ++it)
{
chosenProps[it->m_PropPointName] = it->m_ModelName;
}
}
// Load each prop, and call CalculateVariation on them:
for (std::map<CStr, CStr>::iterator it = chosenProps.begin(); it != chosenProps.end(); ++it)
{
CObjectBase* prop = g_ObjMan.FindObjectBase(it->second);
if (prop)
{
variation_key propChoices;
prop->CalculateVariation(strings, propChoices);
choices.insert(choices.end(), propChoices.begin(), propChoices.end());
}
}
// (TODO: This seems rather fragile, e.g. if props fail to load)
}