0ad/source/renderer/TerrainRenderer.cpp
wraitii 01a8138780 Water GLSL shader improvements around reflections and whitespace fixes.
This improves refractions around entities close to the surface, such as
fishes, by handling depth better and by clipping the water plane a
little lower.

This uses the skybox for reflections when refractions are enabled but
reflections are disabled, making it possible to play with reflections
disabled without having super-ugly water (arguably a performance
improvement).

Differential Revision: https://code.wildfiregames.com/D359
This was SVN commit r22297.
2019-05-25 11:08:57 +00:00

964 lines
32 KiB
C++

/* Copyright (C) 2019 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Terrain rendering (everything related to patches and water) is
* encapsulated in TerrainRenderer
*/
#include "precompiled.h"
#include "graphics/Camera.h"
#include "graphics/Decal.h"
#include "graphics/LightEnv.h"
#include "graphics/LOSTexture.h"
#include "graphics/Patch.h"
#include "graphics/GameView.h"
#include "graphics/Model.h"
#include "graphics/ShaderManager.h"
#include "renderer/ShadowMap.h"
#include "renderer/SkyManager.h"
#include "graphics/TerritoryTexture.h"
#include "graphics/TextRenderer.h"
#include "maths/MathUtil.h"
#include "ps/Filesystem.h"
#include "ps/CLogger.h"
#include "ps/Game.h"
#include "ps/Profile.h"
#include "ps/World.h"
#include "renderer/DecalRData.h"
#include "renderer/PatchRData.h"
#include "renderer/Renderer.h"
#include "renderer/ShadowMap.h"
#include "renderer/TerrainRenderer.h"
#include "renderer/VertexArray.h"
#include "renderer/WaterManager.h"
#include "tools/atlas/GameInterface/GameLoop.h"
extern GameLoopState* g_AtlasGameLoop;
///////////////////////////////////////////////////////////////////////////////////////////////
// TerrainRenderer implementation
/**
* TerrainRenderer keeps track of which phase it is in, to detect
* when Submit, PrepareForRendering etc. are called in the wrong order.
*/
enum Phase {
Phase_Submit,
Phase_Render
};
/**
* Struct TerrainRendererInternals: Internal variables used by the TerrainRenderer class.
*/
struct TerrainRendererInternals
{
/// Which phase (submitting or rendering patches) are we in right now?
Phase phase;
/// Patches that were submitted for this frame
std::vector<CPatchRData*> visiblePatches[CRenderer::CULL_MAX];
/// Decals that were submitted for this frame
std::vector<CDecalRData*> visibleDecals[CRenderer::CULL_MAX];
/// Fancy water shader
CShaderProgramPtr fancyWaterShader;
CSimulation2* simulation;
};
///////////////////////////////////////////////////////////////////
// Construction/Destruction
TerrainRenderer::TerrainRenderer()
{
m = new TerrainRendererInternals();
m->phase = Phase_Submit;
}
TerrainRenderer::~TerrainRenderer()
{
delete m;
}
void TerrainRenderer::SetSimulation(CSimulation2* simulation)
{
m->simulation = simulation;
}
///////////////////////////////////////////////////////////////////
// Submit a patch for rendering
void TerrainRenderer::Submit(int cullGroup, CPatch* patch)
{
ENSURE(m->phase == Phase_Submit);
CPatchRData* data = (CPatchRData*)patch->GetRenderData();
if (data == 0)
{
// no renderdata for patch, create it now
data = new CPatchRData(patch, m->simulation);
patch->SetRenderData(data);
}
data->Update(m->simulation);
m->visiblePatches[cullGroup].push_back(data);
}
///////////////////////////////////////////////////////////////////
// Submit a decal for rendering
void TerrainRenderer::Submit(int cullGroup, CModelDecal* decal)
{
ENSURE(m->phase == Phase_Submit);
CDecalRData* data = (CDecalRData*)decal->GetRenderData();
if (data == 0)
{
// no renderdata for decal, create it now
data = new CDecalRData(decal, m->simulation);
decal->SetRenderData(data);
}
data->Update(m->simulation);
m->visibleDecals[cullGroup].push_back(data);
}
///////////////////////////////////////////////////////////////////
// Prepare for rendering
void TerrainRenderer::PrepareForRendering()
{
ENSURE(m->phase == Phase_Submit);
m->phase = Phase_Render;
}
///////////////////////////////////////////////////////////////////
// Clear submissions lists
void TerrainRenderer::EndFrame()
{
ENSURE(m->phase == Phase_Render || m->phase == Phase_Submit);
for (int i = 0; i < CRenderer::CULL_MAX; ++i)
{
m->visiblePatches[i].clear();
m->visibleDecals[i].clear();
}
m->phase = Phase_Submit;
}
///////////////////////////////////////////////////////////////////
// Full-featured terrain rendering with blending and everything
void TerrainRenderer::RenderTerrain(int cullGroup)
{
#if CONFIG2_GLES
UNUSED2(cullGroup);
#else
ENSURE(m->phase == Phase_Render);
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
std::vector<CDecalRData*>& visibleDecals = m->visibleDecals[cullGroup];
if (visiblePatches.empty() && visibleDecals.empty())
return;
CShaderProgramPtr dummyShader = g_Renderer.GetShaderManager().LoadProgram("fixed:dummy", CShaderDefines());
dummyShader->Bind();
// render the solid black sides of the map first
g_Renderer.BindTexture(0, 0);
glEnableClientState(GL_VERTEX_ARRAY);
glColor3f(0, 0, 0);
PROFILE_START("render terrain sides");
for (size_t i = 0; i < visiblePatches.size(); ++i)
visiblePatches[i]->RenderSides(dummyShader);
PROFILE_END("render terrain sides");
// switch on required client states
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
// render everything fullbright
// set up texture environment for base pass
pglActiveTextureARB(GL_TEXTURE0);
pglClientActiveTextureARB(GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
// Set alpha to 1.0
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
static const float one[4] = { 1.f, 1.f, 1.f, 1.f };
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, one);
PROFILE_START("render terrain base");
CPatchRData::RenderBases(visiblePatches, CShaderDefines(), NULL, true, dummyShader);
PROFILE_END("render terrain base");
// render blends
// switch on the composite alpha map texture
(void)ogl_tex_bind(g_Renderer.m_hCompositeAlphaMap, 1);
// switch on second uv set
pglClientActiveTextureARB(GL_TEXTURE1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
// setup additional texenv required by blend pass
pglActiveTextureARB(GL_TEXTURE1);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_ONE_MINUS_SRC_ALPHA);
// switch on blending
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// no need to write to the depth buffer a second time
glDepthMask(0);
// The decal color array contains lighting data, which we don't want in this non-shader mode
glDisableClientState(GL_COLOR_ARRAY);
// render blend passes for each patch
PROFILE_START("render terrain blends");
CPatchRData::RenderBlends(visiblePatches, CShaderDefines(), NULL, true, dummyShader);
PROFILE_END("render terrain blends");
// Disable second texcoord array
pglClientActiveTextureARB(GL_TEXTURE1);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
// Render terrain decals
g_Renderer.BindTexture(1, 0);
pglActiveTextureARB(GL_TEXTURE0);
pglClientActiveTextureARB(GL_TEXTURE0);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
PROFILE_START("render terrain decals");
CDecalRData::RenderDecals(visibleDecals, CShaderDefines(), NULL, true, dummyShader);
PROFILE_END("render terrain decals");
// Now apply lighting
const CLightEnv& lightEnv = g_Renderer.GetLightEnv();
pglClientActiveTextureARB(GL_TEXTURE0);
glEnableClientState(GL_COLOR_ARRAY); // diffuse lighting colors
// The vertex color is scaled by 0.5 to permit overbrightness without clamping.
// We therefore need to draw clamp((texture*lighting)*2.0), where 'texture'
// is what previous passes drew onto the framebuffer, and 'lighting' is the
// color computed by this pass.
// We can do that with blending by getting it to draw dst*src + src*dst:
glBlendFunc(GL_DST_COLOR, GL_SRC_COLOR);
// Scale the ambient color by 0.5 to match the vertex diffuse colors
float terrainAmbientColor[4] = {
lightEnv.m_TerrainAmbientColor.X * 0.5f,
lightEnv.m_TerrainAmbientColor.Y * 0.5f,
lightEnv.m_TerrainAmbientColor.Z * 0.5f,
1.f
};
CLOSTexture& losTexture = g_Renderer.GetScene().GetLOSTexture();
int streamflags = STREAM_POS|STREAM_COLOR;
pglActiveTextureARB(GL_TEXTURE0);
// We're not going to use a texture here, but we have to have a valid texture
// bound else the texture unit will be disabled.
// We should still have a bound splat texture from some earlier rendering,
// so assume that's still valid to use.
// (TODO: That's a bit of an ugly hack.)
// No shadows: (Ambient + Diffuse) * LOS
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_ADD);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, terrainAmbientColor);
losTexture.BindTexture(1);
pglClientActiveTextureARB(GL_TEXTURE1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
streamflags |= STREAM_POSTOUV1;
glMatrixMode(GL_TEXTURE);
glLoadMatrixf(&losTexture.GetTextureMatrix()._11);
glMatrixMode(GL_MODELVIEW);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA_ARB, GL_SRC_ALPHA);
pglActiveTextureARB(GL_TEXTURE0);
pglClientActiveTextureARB(GL_TEXTURE0);
PROFILE_START("render terrain streams");
CPatchRData::RenderStreams(visiblePatches, dummyShader, streamflags);
PROFILE_END("render terrain streams");
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
// restore OpenGL state
g_Renderer.BindTexture(1, 0);
pglClientActiveTextureARB(GL_TEXTURE1);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
pglClientActiveTextureARB(GL_TEXTURE0);
pglActiveTextureARB(GL_TEXTURE0);
glDepthMask(1);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_BLEND);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
dummyShader->Unbind();
#endif
}
void TerrainRenderer::RenderTerrainOverlayTexture(int cullGroup, CMatrix3D& textureMatrix)
{
#if CONFIG2_GLES
#warning TODO: implement TerrainRenderer::RenderTerrainOverlayTexture for GLES
UNUSED2(cullGroup);
UNUSED2(textureMatrix);
#else
ENSURE(m->phase == Phase_Render);
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
pglActiveTextureARB(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDepthMask(0);
glDisable(GL_DEPTH_TEST);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glMatrixMode(GL_TEXTURE);
glLoadMatrixf(&textureMatrix._11);
glMatrixMode(GL_MODELVIEW);
CShaderProgramPtr dummyShader = g_Renderer.GetShaderManager().LoadProgram("fixed:dummy", CShaderDefines());
dummyShader->Bind();
CPatchRData::RenderStreams(visiblePatches, dummyShader, STREAM_POS|STREAM_POSTOUV0);
dummyShader->Unbind();
// To make the overlay visible over water, render an additional map-sized
// water-height patch
CBoundingBoxAligned waterBounds;
for (size_t i = 0; i < visiblePatches.size(); ++i)
{
CPatchRData* data = visiblePatches[i];
waterBounds += data->GetWaterBounds();
}
if (!waterBounds.IsEmpty())
{
float h = g_Renderer.GetWaterManager()->m_WaterHeight + 0.05f; // add a delta to avoid z-fighting
float waterPos[] = {
waterBounds[0].X, h, waterBounds[0].Z,
waterBounds[1].X, h, waterBounds[0].Z,
waterBounds[0].X, h, waterBounds[1].Z,
waterBounds[1].X, h, waterBounds[1].Z
};
glVertexPointer(3, GL_FLOAT, 3*sizeof(float), waterPos);
glTexCoordPointer(3, GL_FLOAT, 3*sizeof(float), waterPos);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glDepthMask(1);
glEnable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
#endif
}
///////////////////////////////////////////////////////////////////
/**
* Set up all the uniforms for a shader pass.
*/
void TerrainRenderer::PrepareShader(const CShaderProgramPtr& shader, ShadowMap* shadow)
{
shader->Uniform(str_transform, g_Renderer.GetViewCamera().GetViewProjection());
shader->Uniform(str_cameraPos, g_Renderer.GetViewCamera().GetOrientation().GetTranslation());
const CLightEnv& lightEnv = g_Renderer.GetLightEnv();
if (shadow)
{
shader->BindTexture(str_shadowTex, shadow->GetTexture());
shader->Uniform(str_shadowTransform, shadow->GetTextureMatrix());
int width = shadow->GetWidth();
int height = shadow->GetHeight();
shader->Uniform(str_shadowScale, width, height, 1.0f / width, 1.0f / height);
}
CLOSTexture& los = g_Renderer.GetScene().GetLOSTexture();
shader->BindTexture(str_losTex, los.GetTextureSmooth());
shader->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f);
shader->Uniform(str_ambient, lightEnv.m_TerrainAmbientColor);
shader->Uniform(str_sunColor, lightEnv.m_SunColor);
shader->Uniform(str_sunDir, lightEnv.GetSunDir());
shader->Uniform(str_fogColor, lightEnv.m_FogColor);
shader->Uniform(str_fogParams, lightEnv.m_FogFactor, lightEnv.m_FogMax, 0.f, 0.f);
}
void TerrainRenderer::RenderTerrainShader(const CShaderDefines& context, int cullGroup, ShadowMap* shadow)
{
ENSURE(m->phase == Phase_Render);
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
std::vector<CDecalRData*>& visibleDecals = m->visibleDecals[cullGroup];
if (visiblePatches.empty() && visibleDecals.empty())
return;
// render the solid black sides of the map first
CShaderTechniquePtr techSolid = g_Renderer.GetShaderManager().LoadEffect(str_gui_solid);
techSolid->BeginPass();
CShaderProgramPtr shaderSolid = techSolid->GetShader();
shaderSolid->Uniform(str_transform, g_Renderer.GetViewCamera().GetViewProjection());
shaderSolid->Uniform(str_color, 0.0f, 0.0f, 0.0f, 1.0f);
PROFILE_START("render terrain sides");
for (size_t i = 0; i < visiblePatches.size(); ++i)
visiblePatches[i]->RenderSides(shaderSolid);
PROFILE_END("render terrain sides");
techSolid->EndPass();
PROFILE_START("render terrain base");
CPatchRData::RenderBases(visiblePatches, context, shadow);
PROFILE_END("render terrain base");
// no need to write to the depth buffer a second time
glDepthMask(0);
// render blend passes for each patch
PROFILE_START("render terrain blends");
CPatchRData::RenderBlends(visiblePatches, context, shadow, false);
PROFILE_END("render terrain blends");
PROFILE_START("render terrain decals");
CDecalRData::RenderDecals(visibleDecals, context, shadow, false);
PROFILE_END("render terrain decals");
// restore OpenGL state
g_Renderer.BindTexture(1, 0);
g_Renderer.BindTexture(2, 0);
g_Renderer.BindTexture(3, 0);
glDepthMask(1);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_BLEND);
}
///////////////////////////////////////////////////////////////////
// Render un-textured patches as polygons
void TerrainRenderer::RenderPatches(int cullGroup)
{
ENSURE(m->phase == Phase_Render);
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
if (visiblePatches.empty())
return;
#if CONFIG2_GLES
#warning TODO: implement TerrainRenderer::RenderPatches for GLES
#else
CShaderProgramPtr dummyShader = g_Renderer.GetShaderManager().LoadProgram("fixed:dummy", CShaderDefines());
dummyShader->Bind();
glEnableClientState(GL_VERTEX_ARRAY);
CPatchRData::RenderStreams(visiblePatches, dummyShader, STREAM_POS);
glDisableClientState(GL_VERTEX_ARRAY);
dummyShader->Unbind();
#endif
}
///////////////////////////////////////////////////////////////////
// Render outlines of submitted patches as lines
void TerrainRenderer::RenderOutlines(int cullGroup)
{
ENSURE(m->phase == Phase_Render);
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
if (visiblePatches.empty())
return;
#if CONFIG2_GLES
#warning TODO: implement TerrainRenderer::RenderOutlines for GLES
#else
glEnableClientState(GL_VERTEX_ARRAY);
for (size_t i = 0; i < visiblePatches.size(); ++i)
visiblePatches[i]->RenderOutline();
glDisableClientState(GL_VERTEX_ARRAY);
#endif
}
///////////////////////////////////////////////////////////////////
// Scissor rectangle of water patches
CBoundingBoxAligned TerrainRenderer::ScissorWater(int cullGroup, const CMatrix3D &viewproj)
{
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
CBoundingBoxAligned scissor;
for (size_t i = 0; i < visiblePatches.size(); ++i)
{
CPatchRData* data = visiblePatches[i];
const CBoundingBoxAligned& waterBounds = data->GetWaterBounds();
if (waterBounds.IsEmpty())
continue;
CVector4D v1 = viewproj.Transform(CVector4D(waterBounds[0].X, waterBounds[1].Y, waterBounds[0].Z, 1.0f));
CVector4D v2 = viewproj.Transform(CVector4D(waterBounds[1].X, waterBounds[1].Y, waterBounds[0].Z, 1.0f));
CVector4D v3 = viewproj.Transform(CVector4D(waterBounds[0].X, waterBounds[1].Y, waterBounds[1].Z, 1.0f));
CVector4D v4 = viewproj.Transform(CVector4D(waterBounds[1].X, waterBounds[1].Y, waterBounds[1].Z, 1.0f));
CBoundingBoxAligned screenBounds;
#define ADDBOUND(v1, v2, v3, v4) \
if (v1.Z >= -v1.W) \
screenBounds += CVector3D(v1.X, v1.Y, v1.Z) * (1.0f / v1.W); \
else \
{ \
float t = v1.Z + v1.W; \
if (v2.Z > -v2.W) \
{ \
CVector4D c2 = v1 + (v2 - v1) * (t / (t - (v2.Z + v2.W))); \
screenBounds += CVector3D(c2.X, c2.Y, c2.Z) * (1.0f / c2.W); \
} \
if (v3.Z > -v3.W) \
{ \
CVector4D c3 = v1 + (v3 - v1) * (t / (t - (v3.Z + v3.W))); \
screenBounds += CVector3D(c3.X, c3.Y, c3.Z) * (1.0f / c3.W); \
} \
if (v4.Z > -v4.W) \
{ \
CVector4D c4 = v1 + (v4 - v1) * (t / (t - (v4.Z + v4.W))); \
screenBounds += CVector3D(c4.X, c4.Y, c4.Z) * (1.0f / c4.W); \
} \
}
ADDBOUND(v1, v2, v3, v4);
ADDBOUND(v2, v1, v3, v4);
ADDBOUND(v3, v1, v2, v4);
ADDBOUND(v4, v1, v2, v3);
#undef ADDBOUND
if (screenBounds[0].X >= 1.0f || screenBounds[1].X <= -1.0f || screenBounds[0].Y >= 1.0f || screenBounds[1].Y <= -1.0f)
continue;
scissor += screenBounds;
}
return CBoundingBoxAligned(CVector3D(clamp(scissor[0].X, -1.0f, 1.0f), clamp(scissor[0].Y, -1.0f, 1.0f), -1.0f),
CVector3D(clamp(scissor[1].X, -1.0f, 1.0f), clamp(scissor[1].Y, -1.0f, 1.0f), 1.0f));
}
// Render fancy water
bool TerrainRenderer::RenderFancyWater(const CShaderDefines& context, int cullGroup, ShadowMap* shadow)
{
PROFILE3_GPU("fancy water");
WaterManager* WaterMgr = g_Renderer.GetWaterManager();
CShaderDefines defines = context;
// If we're using fancy water, make sure its shader is loaded
if (!m->fancyWaterShader || WaterMgr->m_NeedsReloading)
{
if (WaterMgr->m_WaterRealDepth)
defines.Add(str_USE_REAL_DEPTH, str_1);
if (WaterMgr->m_WaterFancyEffects)
defines.Add(str_USE_FANCY_EFFECTS, str_1);
if (WaterMgr->m_WaterRefraction)
defines.Add(str_USE_REFRACTION, str_1);
if (WaterMgr->m_WaterReflection)
defines.Add(str_USE_REFLECTION, str_1);
if (shadow && WaterMgr->m_WaterShadows)
defines.Add(str_USE_SHADOWS_ON_WATER, str_1);
// haven't updated the ARB shader yet so I'll always load the GLSL
/*if (!g_Renderer.m_Options.m_PreferGLSL && !superFancy)
m->fancyWaterShader = g_Renderer.GetShaderManager().LoadProgram("arb/water_high", defines);
else*/
m->fancyWaterShader = g_Renderer.GetShaderManager().LoadProgram("glsl/water_high", defines);
if (!m->fancyWaterShader)
{
LOGERROR("Failed to load water shader. Falling back to fixed pipeline water.\n");
WaterMgr->m_RenderWater = false;
return false;
}
WaterMgr->m_NeedsReloading = false;
}
CLOSTexture& losTexture = g_Renderer.GetScene().GetLOSTexture();
// creating the real depth texture using the depth buffer.
if (WaterMgr->m_WaterRealDepth)
{
if (WaterMgr->m_depthTT == 0)
{
GLuint depthTex;
glGenTextures(1, (GLuint*)&depthTex);
WaterMgr->m_depthTT = depthTex;
glBindTexture(GL_TEXTURE_2D, WaterMgr->m_depthTT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, g_Renderer.GetWidth(), g_Renderer.GetHeight(), 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE,NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
else
{
glBindTexture(GL_TEXTURE_2D, WaterMgr->m_depthTT);
glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 0, 0, g_Renderer.GetWidth(), g_Renderer.GetHeight(), 0);
}
glBindTexture(GL_TEXTURE_2D, 0);
}
// Calculating the advanced informations about Foam and all if the quality calls for it.
/*if (WaterMgr->m_NeedInfoUpdate && (WaterMgr->m_WaterFoam || WaterMgr->m_WaterCoastalWaves))
{
WaterMgr->m_NeedInfoUpdate = false;
WaterMgr->CreateSuperfancyInfo();
}*/
double time = WaterMgr->m_WaterTexTimer;
double period = 8;
int curTex = (int)(time*60/period) % 60;
int nexTex = (curTex + 1) % 60;
float repeatPeriod = WaterMgr->m_RepeatPeriod;
// Render normals and foam to a framebuffer if we're in fancy effects
if (WaterMgr->m_WaterFancyEffects)
{
// Save the post-processing framebuffer.
GLint fbo;
glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, &fbo);
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, WaterMgr->m_FancyEffectsFBO);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glDisable(GL_CULL_FACE);
// Overwrite waves that would be behind the ground.
CShaderProgramPtr dummyShader = g_Renderer.GetShaderManager().LoadProgram("glsl/gui_solid", CShaderDefines());
dummyShader->Bind();
dummyShader->Uniform(str_transform, g_Renderer.GetViewCamera().GetViewProjection());
dummyShader->Uniform(str_color, 0.0f, 0.0f, 0.0f, 0.0f);
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
for (size_t i = 0; i < visiblePatches.size(); ++i)
{
CPatchRData* data = visiblePatches[i];
data->RenderWater(dummyShader, true, true);
}
dummyShader->Unbind();
glEnable(GL_CULL_FACE);
pglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
}
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
m->fancyWaterShader->Bind();
const CCamera& camera = g_Renderer.GetViewCamera();
CVector3D camPos = camera.m_Orientation.GetTranslation();
m->fancyWaterShader->BindTexture(str_normalMap, WaterMgr->m_NormalMap[curTex]);
m->fancyWaterShader->BindTexture(str_normalMap2, WaterMgr->m_NormalMap[nexTex]);
if (WaterMgr->m_WaterFancyEffects)
{
m->fancyWaterShader->BindTexture(str_waterEffectsTexNorm, WaterMgr->m_FancyTextureNormal);
m->fancyWaterShader->BindTexture(str_waterEffectsTexOther, WaterMgr->m_FancyTextureOther);
}
if (WaterMgr->m_WaterRealDepth)
m->fancyWaterShader->BindTexture(str_depthTex, WaterMgr->m_depthTT);
if (WaterMgr->m_WaterRefraction)
m->fancyWaterShader->BindTexture(str_refractionMap, WaterMgr->m_RefractionTexture);
m->fancyWaterShader->BindTexture(str_reflectionMap, WaterMgr->m_ReflectionTexture);
m->fancyWaterShader->BindTexture(str_losMap, losTexture.GetTextureSmooth());
const CLightEnv& lightEnv = g_Renderer.GetLightEnv();
m->fancyWaterShader->Uniform(str_transform, g_Renderer.GetViewCamera().GetViewProjection());
//TODO: bind only what's needed
if (WaterMgr->m_WaterRefraction || WaterMgr->m_WaterReflection)
{
m->fancyWaterShader->BindTexture(str_skyCube, g_Renderer.GetSkyManager()->GetSkyCube());
// TODO: check that this rotates in the right direction.
CMatrix3D skyBoxRotation;
skyBoxRotation.SetIdentity();
skyBoxRotation.RotateY(M_PI + lightEnv.GetRotation());
m->fancyWaterShader->Uniform(str_skyBoxRot, skyBoxRotation);
}
m->fancyWaterShader->Uniform(str_sunDir, lightEnv.GetSunDir());
m->fancyWaterShader->Uniform(str_sunColor, lightEnv.m_SunColor);
m->fancyWaterShader->Uniform(str_color, WaterMgr->m_WaterColor);
m->fancyWaterShader->Uniform(str_tint, WaterMgr->m_WaterTint);
m->fancyWaterShader->Uniform(str_waviness, WaterMgr->m_Waviness);
m->fancyWaterShader->Uniform(str_murkiness, WaterMgr->m_Murkiness);
m->fancyWaterShader->Uniform(str_windAngle, WaterMgr->m_WindAngle);
m->fancyWaterShader->Uniform(str_repeatScale, 1.0f / repeatPeriod);
m->fancyWaterShader->Uniform(str_reflectionMatrix, WaterMgr->m_ReflectionMatrix);
m->fancyWaterShader->Uniform(str_refractionMatrix, WaterMgr->m_RefractionMatrix);
m->fancyWaterShader->Uniform(str_losMatrix, losTexture.GetTextureMatrix());
m->fancyWaterShader->Uniform(str_cameraPos, camPos);
m->fancyWaterShader->Uniform(str_fogColor, lightEnv.m_FogColor);
m->fancyWaterShader->Uniform(str_fogParams, lightEnv.m_FogFactor, lightEnv.m_FogMax, 0.f, 0.f);
m->fancyWaterShader->Uniform(str_time, (float)time);
m->fancyWaterShader->Uniform(str_screenSize, (float)g_Renderer.GetWidth(), (float)g_Renderer.GetHeight(), 0.0f, 0.0f);
if (WaterMgr->m_WaterType == L"clap")
{
m->fancyWaterShader->Uniform(str_waveParams1, 30.0f,1.5f,20.0f,0.03f);
m->fancyWaterShader->Uniform(str_waveParams2, 0.5f,0.0f,0.0f,0.0f);
}
else if (WaterMgr->m_WaterType == L"lake")
{
m->fancyWaterShader->Uniform(str_waveParams1, 8.5f,1.5f,15.0f,0.03f);
m->fancyWaterShader->Uniform(str_waveParams2, 0.2f,0.0f,0.0f,0.07f);
}
else
{
m->fancyWaterShader->Uniform(str_waveParams1, 15.0f,0.8f,10.0f,0.1f);
m->fancyWaterShader->Uniform(str_waveParams2, 0.3f,0.0f,0.1f,0.3f);
}
if (shadow && WaterMgr->m_WaterShadows)
{
m->fancyWaterShader->BindTexture(str_shadowTex, shadow->GetTexture());
m->fancyWaterShader->Uniform(str_shadowTransform, shadow->GetTextureMatrix());
int width = shadow->GetWidth();
int height = shadow->GetHeight();
m->fancyWaterShader->Uniform(str_shadowScale, width, height, 1.0f / width, 1.0f / height);
}
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
for (size_t i = 0; i < visiblePatches.size(); ++i)
{
CPatchRData* data = visiblePatches[i];
data->RenderWater(m->fancyWaterShader);
}
m->fancyWaterShader->Unbind();
glDepthFunc(GL_LEQUAL);
glDisable(GL_BLEND);
return true;
}
void TerrainRenderer::RenderSimpleWater(int cullGroup)
{
#if CONFIG2_GLES
UNUSED2(cullGroup);
#else
PROFILE3_GPU("simple water");
WaterManager* WaterMgr = g_Renderer.GetWaterManager();
CLOSTexture& losTexture = g_Game->GetView()->GetLOSTexture();
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
double time = WaterMgr->m_WaterTexTimer;
double period = 1.6f;
int curTex = (int)(time*60/period) % 60;
WaterMgr->m_WaterTexture[curTex]->Bind();
// Shift the texture coordinates by these amounts to make the water "flow"
float tx = -fmod(time, 81.0)/81.0;
float ty = -fmod(time, 34.0)/34.0;
float repeatPeriod = 16.0f;
// Perform the shifting by using texture coordinate generation
GLfloat texgenS0[4] = { 1/repeatPeriod, 0, 0, tx };
GLfloat texgenT0[4] = { 0, 0, 1/repeatPeriod, ty };
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(GL_S, GL_OBJECT_PLANE, texgenS0);
glTexGenfv(GL_T, GL_OBJECT_PLANE, texgenT0);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
// Set up texture environment to multiply vertex RGB by texture RGB.
GLfloat waterColor[4] = { WaterMgr->m_WaterColor.r, WaterMgr->m_WaterColor.g, WaterMgr->m_WaterColor.b, 1.0f };
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, waterColor);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_CONSTANT);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_COLOR);
// Multiply by LOS texture
losTexture.BindTexture(1);
CMatrix3D losMatrix = losTexture.GetTextureMatrix();
GLfloat texgenS1[4] = { losMatrix[0], losMatrix[4], losMatrix[8], losMatrix[12] };
GLfloat texgenT1[4] = { losMatrix[1], losMatrix[5], losMatrix[9], losMatrix[13] };
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(GL_S, GL_OBJECT_PLANE, texgenS1);
glTexGenfv(GL_T, GL_OBJECT_PLANE, texgenT1);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB_ARB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB_ARB, GL_SRC_ALPHA);
CShaderProgramPtr dummyShader = g_Renderer.GetShaderManager().LoadProgram("fixed:dummy", CShaderDefines());
dummyShader->Bind();
glEnableClientState(GL_VERTEX_ARRAY);
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
for (size_t i = 0; i < visiblePatches.size(); ++i)
{
CPatchRData* data = visiblePatches[i];
data->RenderWater(dummyShader, false, true);
}
glDisableClientState(GL_VERTEX_ARRAY);
dummyShader->Unbind();
g_Renderer.BindTexture(1, 0);
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
pglActiveTextureARB(GL_TEXTURE0_ARB);
// Clean up the texture matrix and blend mode
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glDisable(GL_TEXTURE_2D);
#endif
}
///////////////////////////////////////////////////////////////////
// Render water that is part of the terrain
void TerrainRenderer::RenderWater(const CShaderDefines& context, int cullGroup, ShadowMap* shadow)
{
WaterManager* WaterMgr = g_Renderer.GetWaterManager();
WaterMgr->UpdateQuality();
if (!WaterMgr->WillRenderFancyWater())
RenderSimpleWater(cullGroup);
else
RenderFancyWater(context, cullGroup, shadow);
}
void TerrainRenderer::RenderPriorities(int cullGroup)
{
PROFILE("priorities");
ENSURE(m->phase == Phase_Render);
CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(str_gui_text);
tech->BeginPass();
CTextRenderer textRenderer(tech->GetShader());
textRenderer.Font(CStrIntern("mono-stroke-10"));
textRenderer.Color(1.0f, 1.0f, 0.0f);
std::vector<CPatchRData*>& visiblePatches = m->visiblePatches[cullGroup];
for (size_t i = 0; i < visiblePatches.size(); ++i)
visiblePatches[i]->RenderPriorities(textRenderer);
textRenderer.Render();
tech->EndPass();
}