0ad/source/simulation2/components/CCmpPathfinder_Common.h
wraitii 92ad6a61fa Fix OOS introduced by pathfinder threading preparation diff d592bf9cb6
Following d592bf9cb6, paths were computed at the end of turn N, and then
messages were sent at the beginning of turn N+1. However, the path
requests were removed at the end of turn N and so weren't serialised,
and neither were computed paths. This meant rejoiners would OOS when the
game was serialised with pending path results.

To fix this in preparation for threading, the architecture needs to
change slightly so that requests are kept and serialised correctly, and
rejoiners can compute the paths after deserialisation, in order to send
the messages at the beginning of turn N+1.

Fixes #5604

Reported By: elexis
Differential Revision: https://code.wildfiregames.com/D2317
This was SVN commit r22979.
2019-09-23 06:38:16 +00:00

287 lines
9.3 KiB
C++

/* Copyright (C) 2019 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_CCMPPATHFINDER_COMMON
#define INCLUDED_CCMPPATHFINDER_COMMON
/**
* @file
* Declares CCmpPathfinder. Its implementation is mainly done in CCmpPathfinder.cpp,
* but the short-range (vertex) pathfinding is done in CCmpPathfinder_Vertex.cpp.
* This file provides common code needed for both files.
*
* The long-range pathfinding is done by a LongPathfinder object.
*/
#include "simulation2/system/Component.h"
#include "ICmpPathfinder.h"
#include "graphics/Overlay.h"
#include "graphics/Terrain.h"
#include "maths/MathUtil.h"
#include "ps/CLogger.h"
#include "renderer/TerrainOverlay.h"
#include "simulation2/components/ICmpObstructionManager.h"
class HierarchicalPathfinder;
class LongPathfinder;
class VertexPathfinder;
class SceneCollector;
class AtlasOverlay;
#ifdef NDEBUG
#define PATHFIND_DEBUG 0
#else
#define PATHFIND_DEBUG 1
#endif
/**
* Implementation of ICmpPathfinder
*/
class CCmpPathfinder final : public ICmpPathfinder
{
protected:
class PathfinderWorker
{
friend CCmpPathfinder;
public:
PathfinderWorker();
// Process path requests, checking if we should stop before each new one.
void Work(const CCmpPathfinder& pathfinder);
private:
// Insert requests in m_[Long/Short]Requests depending on from.
// This could be removed when we may use if-constexpr in CCmpPathfinder::PushRequestsToWorkers
template<typename T>
void PushRequests(std::vector<T>& from, ssize_t amount);
// Stores our results, the main thread will fetch this.
std::vector<PathResult> m_Results;
std::vector<LongPathRequest> m_LongRequests;
std::vector<ShortPathRequest> m_ShortRequests;
};
// Allow the workers to access our private variables
friend class PathfinderWorker;
public:
static void ClassInit(CComponentManager& componentManager)
{
componentManager.SubscribeToMessageType(MT_Deserialized);
componentManager.SubscribeToMessageType(MT_Update);
componentManager.SubscribeToMessageType(MT_RenderSubmit); // for debug overlays
componentManager.SubscribeToMessageType(MT_TerrainChanged);
componentManager.SubscribeToMessageType(MT_WaterChanged);
componentManager.SubscribeToMessageType(MT_ObstructionMapShapeChanged);
componentManager.SubscribeToMessageType(MT_TurnStart);
}
~CCmpPathfinder();
DEFAULT_COMPONENT_ALLOCATOR(Pathfinder)
// Template state:
std::map<std::string, pass_class_t> m_PassClassMasks;
std::vector<PathfinderPassability> m_PassClasses;
// Dynamic state:
std::vector<LongPathRequest> m_LongPathRequests;
std::vector<ShortPathRequest> m_ShortPathRequests;
u32 m_NextAsyncTicket; // Unique IDs for asynchronous path requests.
u16 m_MaxSameTurnMoves; // Compute only this many paths when useMax is true in StartProcessingMoves.
// Lazily-constructed dynamic state (not serialized):
u16 m_MapSize; // tiles per side
Grid<NavcellData>* m_Grid; // terrain/passability information
Grid<NavcellData>* m_TerrainOnlyGrid; // same as m_Grid, but only with terrain, to avoid some recomputations
// Keep clever updates in memory to avoid memory fragmentation from the grid.
// This should be used only in UpdateGrid(), there is no guarantee the data is properly initialized anywhere else.
GridUpdateInformation m_DirtinessInformation;
// The data from clever updates is stored for the AI manager
GridUpdateInformation m_AIPathfinderDirtinessInformation;
bool m_TerrainDirty;
std::unique_ptr<VertexPathfinder> m_VertexPathfinder;
std::unique_ptr<HierarchicalPathfinder> m_PathfinderHier;
std::unique_ptr<LongPathfinder> m_LongPathfinder;
// Workers process pathing requests.
std::vector<PathfinderWorker> m_Workers;
AtlasOverlay* m_AtlasOverlay;
static std::string GetSchema()
{
return "<a:component type='system'/><empty/>";
}
virtual void Init(const CParamNode& paramNode);
virtual void Deinit();
template<typename S>
void SerializeCommon(S& serialize);
virtual void Serialize(ISerializer& serialize);
virtual void Deserialize(const CParamNode& paramNode, IDeserializer& deserialize);
virtual void HandleMessage(const CMessage& msg, bool global);
virtual pass_class_t GetPassabilityClass(const std::string& name) const;
virtual void GetPassabilityClasses(std::map<std::string, pass_class_t>& passClasses) const;
virtual void GetPassabilityClasses(
std::map<std::string, pass_class_t>& nonPathfindingPassClasses,
std::map<std::string, pass_class_t>& pathfindingPassClasses) const;
const PathfinderPassability* GetPassabilityFromMask(pass_class_t passClass) const;
virtual entity_pos_t GetClearance(pass_class_t passClass) const
{
const PathfinderPassability* passability = GetPassabilityFromMask(passClass);
if (!passability)
return fixed::Zero();
return passability->m_Clearance;
}
virtual entity_pos_t GetMaximumClearance() const
{
entity_pos_t max = fixed::Zero();
for (const PathfinderPassability& passability : m_PassClasses)
if (passability.m_Clearance > max)
max = passability.m_Clearance;
return max + Pathfinding::CLEARANCE_EXTENSION_RADIUS;
}
virtual const Grid<NavcellData>& GetPassabilityGrid();
virtual const GridUpdateInformation& GetAIPathfinderDirtinessInformation() const
{
return m_AIPathfinderDirtinessInformation;
}
virtual void FlushAIPathfinderDirtinessInformation()
{
m_AIPathfinderDirtinessInformation.Clean();
}
virtual Grid<u16> ComputeShoreGrid(bool expandOnWater = false);
virtual void ComputePathImmediate(entity_pos_t x0, entity_pos_t z0, const PathGoal& goal, pass_class_t passClass, WaypointPath& ret) const;
virtual u32 ComputePathAsync(entity_pos_t x0, entity_pos_t z0, const PathGoal& goal, pass_class_t passClass, entity_id_t notify);
virtual WaypointPath ComputeShortPathImmediate(const ShortPathRequest& request) const;
virtual u32 ComputeShortPathAsync(entity_pos_t x0, entity_pos_t z0, entity_pos_t clearance, entity_pos_t range, const PathGoal& goal, pass_class_t passClass, bool avoidMovingUnits, entity_id_t controller, entity_id_t notify);
virtual void SetDebugPath(entity_pos_t x0, entity_pos_t z0, const PathGoal& goal, pass_class_t passClass);
virtual void SetDebugOverlay(bool enabled);
virtual void SetHierDebugOverlay(bool enabled);
virtual void GetDebugData(u32& steps, double& time, Grid<u8>& grid) const;
virtual void SetAtlasOverlay(bool enable, pass_class_t passClass = 0);
virtual bool CheckMovement(const IObstructionTestFilter& filter, entity_pos_t x0, entity_pos_t z0, entity_pos_t x1, entity_pos_t z1, entity_pos_t r, pass_class_t passClass) const;
virtual ICmpObstruction::EFoundationCheck CheckUnitPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t r, pass_class_t passClass, bool onlyCenterPoint) const;
virtual ICmpObstruction::EFoundationCheck CheckBuildingPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h, entity_id_t id, pass_class_t passClass) const;
virtual ICmpObstruction::EFoundationCheck CheckBuildingPlacement(const IObstructionTestFilter& filter, entity_pos_t x, entity_pos_t z, entity_pos_t a, entity_pos_t w, entity_pos_t h, entity_id_t id, pass_class_t passClass, bool onlyCenterPoint) const;
virtual void FetchAsyncResultsAndSendMessages();
virtual void StartProcessingMoves(bool useMax);
template <typename T>
std::vector<T> GetMovesToProcess(std::vector<T>& requests, bool useMax = false, size_t maxMoves = 0);
template <typename T>
void PushRequestsToWorkers(std::vector<T>& from);
/**
* Regenerates the grid based on the current obstruction list, if necessary
*/
virtual void UpdateGrid();
/**
* Updates the terrain-only grid without updating the dirtiness informations.
* Useful for fast passability updates in Atlas.
*/
void MinimalTerrainUpdate();
/**
* Regenerates the terrain-only grid.
* Atlas doesn't need to have passability cells expanded.
*/
void TerrainUpdateHelper(bool expandPassability = true);
void RenderSubmit(SceneCollector& collector);
};
class AtlasOverlay : public TerrainTextureOverlay
{
public:
const CCmpPathfinder* m_Pathfinder;
pass_class_t m_PassClass;
AtlasOverlay(const CCmpPathfinder* pathfinder, pass_class_t passClass) :
TerrainTextureOverlay(Pathfinding::NAVCELLS_PER_TILE), m_Pathfinder(pathfinder), m_PassClass(passClass)
{
}
virtual void BuildTextureRGBA(u8* data, size_t w, size_t h)
{
// Render navcell passability, based on the terrain-only grid
u8* p = data;
for (size_t j = 0; j < h; ++j)
{
for (size_t i = 0; i < w; ++i)
{
SColor4ub color(0, 0, 0, 0);
if (!IS_PASSABLE(m_Pathfinder->m_TerrainOnlyGrid->get((int)i, (int)j), m_PassClass))
color = SColor4ub(255, 0, 0, 127);
*p++ = color.R;
*p++ = color.G;
*p++ = color.B;
*p++ = color.A;
}
}
}
};
#endif // INCLUDED_CCMPPATHFINDER_COMMON