0ad/source/simulation2/helpers/LongPathfinder.h
wraitii 32b2c01c7c Decouple long and hierarchical pathfinders to an extent.
Following 809f297707, this decouples the hierarchical pathfinder and the
long pathfinder. The long pathfinder was the class owning the
hierarchical pathfinder, which didn't particularly make sense and
resulted in some interface awkwardness.

At the moment, the long pathfinder still needs to hierarchical
pathfinder to compute paths (to make sure they are reachable).

Differential Revision: https://code.wildfiregames.com/D1867
This was SVN commit r22278.
2019-05-13 16:58:00 +00:00

372 lines
11 KiB
C++

/* Copyright (C) 2017 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_LONGPATHFINDER
#define INCLUDED_LONGPATHFINDER
#include "Pathfinding.h"
#include "graphics/Overlay.h"
#include "renderer/Scene.h"
#include "renderer/TerrainOverlay.h"
#include "simulation2/helpers/PriorityQueue.h"
/**
* Represents the 2D coordinates of a tile.
* The i/j components are packed into a single u32, since we usually use these
* objects for equality comparisons and the VC2010 optimizer doesn't seem to automatically
* compare two u16s in a single operation.
* TODO: maybe VC2012 will?
*/
struct TileID
{
TileID() { }
TileID(u16 i, u16 j) : data((i << 16) | j) { }
bool operator==(const TileID& b) const
{
return data == b.data;
}
/// Returns lexicographic order over (i,j)
bool operator<(const TileID& b) const
{
return data < b.data;
}
u16 i() const { return data >> 16; }
u16 j() const { return data & 0xFFFF; }
private:
u32 data;
};
/**
* Tile data for A* computation.
* (We store an array of one of these per terrain tile, so it ought to be optimised for size)
*/
struct PathfindTile
{
public:
enum {
STATUS_UNEXPLORED = 0,
STATUS_OPEN = 1,
STATUS_CLOSED = 2
};
bool IsUnexplored() const { return GetStatus() == STATUS_UNEXPLORED; }
bool IsOpen() const { return GetStatus() == STATUS_OPEN; }
bool IsClosed() const { return GetStatus() == STATUS_CLOSED; }
void SetStatusOpen() { SetStatus(STATUS_OPEN); }
void SetStatusClosed() { SetStatus(STATUS_CLOSED); }
// Get pi,pj coords of predecessor to this tile on best path, given i,j coords of this tile
inline int GetPredI(int i) const { return i + GetPredDI(); }
inline int GetPredJ(int j) const { return j + GetPredDJ(); }
inline PathCost GetCost() const { return g; }
inline void SetCost(PathCost cost) { g = cost; }
private:
PathCost g; // cost to reach this tile
u32 data; // 2-bit status; 15-bit PredI; 15-bit PredJ; packed for storage efficiency
public:
inline u8 GetStatus() const
{
return data & 3;
}
inline void SetStatus(u8 s)
{
ASSERT(s < 4);
data &= ~3;
data |= (s & 3);
}
int GetPredDI() const
{
return (i32)data >> 17;
}
int GetPredDJ() const
{
return ((i32)data << 15) >> 17;
}
// Set the pi,pj coords of predecessor, given i,j coords of this tile
inline void SetPred(int pi, int pj, int i, int j)
{
int di = pi - i;
int dj = pj - j;
ASSERT(-16384 <= di && di < 16384);
ASSERT(-16384 <= dj && dj < 16384);
data &= 3;
data |= (((u32)di & 0x7FFF) << 17) | (((u32)dj & 0x7FFF) << 2);
}
};
struct CircularRegion
{
CircularRegion(entity_pos_t x, entity_pos_t z, entity_pos_t r) : x(x), z(z), r(r) {}
entity_pos_t x, z, r;
};
typedef PriorityQueueHeap<TileID, PathCost, PathCost> PriorityQueue;
typedef SparseGrid<PathfindTile> PathfindTileGrid;
class JumpPointCache;
struct PathfinderState
{
u32 steps; // number of algorithm iterations
PathGoal goal;
u16 iGoal, jGoal; // goal tile
pass_class_t passClass;
PriorityQueue open;
// (there's no explicit closed list; it's encoded in PathfindTile)
PathfindTileGrid* tiles;
Grid<NavcellData>* terrain;
PathCost hBest; // heuristic of closest discovered tile to goal
u16 iBest, jBest; // closest tile
JumpPointCache* jpc;
};
class LongOverlay;
class HierarchicalPathfinder;
class LongPathfinder
{
public:
LongPathfinder();
~LongPathfinder();
void SetDebugOverlay(bool enabled);
void SetDebugPath(const HierarchicalPathfinder& hierPath, entity_pos_t x0, entity_pos_t z0, const PathGoal& goal, pass_class_t passClass)
{
if (!m_DebugOverlay)
return;
SAFE_DELETE(m_DebugGrid);
delete m_DebugPath;
m_DebugPath = new WaypointPath();
ComputePath(hierPath, x0, z0, goal, passClass, *m_DebugPath);
m_DebugPassClass = passClass;
}
void Reload(Grid<NavcellData>* passabilityGrid)
{
m_Grid = passabilityGrid;
ASSERT(passabilityGrid->m_H == passabilityGrid->m_W);
m_GridSize = passabilityGrid->m_W;
m_JumpPointCache.clear();
}
void Update(Grid<NavcellData>* passabilityGrid)
{
m_Grid = passabilityGrid;
ASSERT(passabilityGrid->m_H == passabilityGrid->m_W);
ASSERT(m_GridSize == passabilityGrid->m_H);
m_JumpPointCache.clear();
}
/**
* Compute a tile-based path from the given point to the goal, and return the set of waypoints.
* The waypoints correspond to the centers of horizontally/vertically adjacent tiles
* along the path.
*/
void ComputePath(const HierarchicalPathfinder& hierPath, entity_pos_t x0, entity_pos_t z0, const PathGoal& origGoal,
pass_class_t passClass, WaypointPath& path) const;
/**
* Compute a tile-based path from the given point to the goal, excluding the regions
* specified in excludedRegions (which are treated as impassable) and return the set of waypoints.
* The waypoints correspond to the centers of horizontally/vertically adjacent tiles
* along the path.
*/
void ComputePath(const HierarchicalPathfinder& hierPath, entity_pos_t x0, entity_pos_t z0, const PathGoal& origGoal,
pass_class_t passClass, std::vector<CircularRegion> excludedRegions, WaypointPath& path);
void GetDebugData(u32& steps, double& time, Grid<u8>& grid) const
{
GetDebugDataJPS(steps, time, grid);
}
Grid<NavcellData>* m_Grid;
u16 m_GridSize;
// Debugging - output from last pathfind operation.
// mutable as making these const would require a lot of boilerplate code
// and they do not change the behavioural const-ness of the pathfinder.
mutable LongOverlay* m_DebugOverlay;
mutable PathfindTileGrid* m_DebugGrid;
mutable u32 m_DebugSteps;
mutable double m_DebugTime;
mutable PathGoal m_DebugGoal;
mutable WaypointPath* m_DebugPath;
mutable pass_class_t m_DebugPassClass;
private:
PathCost CalculateHeuristic(int i, int j, int iGoal, int jGoal) const;
void ProcessNeighbour(int pi, int pj, int i, int j, PathCost pg, PathfinderState& state) const;
/**
* JPS algorithm helper functions
* @param detectGoal is not used if m_UseJPSCache is true
*/
void AddJumpedHoriz(int i, int j, int di, PathCost g, PathfinderState& state, bool detectGoal) const;
int HasJumpedHoriz(int i, int j, int di, PathfinderState& state, bool detectGoal) const;
void AddJumpedVert(int i, int j, int dj, PathCost g, PathfinderState& state, bool detectGoal) const;
int HasJumpedVert(int i, int j, int dj, PathfinderState& state, bool detectGoal) const;
void AddJumpedDiag(int i, int j, int di, int dj, PathCost g, PathfinderState& state) const;
/**
* See LongPathfinder.cpp for implementation details
* TODO: cleanup documentation
*/
void ComputeJPSPath(const HierarchicalPathfinder& hierPath, entity_pos_t x0, entity_pos_t z0, const PathGoal& origGoal, pass_class_t passClass, WaypointPath& path) const;
void GetDebugDataJPS(u32& steps, double& time, Grid<u8>& grid) const;
// Helper functions for ComputePath
/**
* Given a path with an arbitrary collection of waypoints, updates the
* waypoints to be nicer. Calls "Testline" between waypoints
* so that bended paths can become straight if there's nothing in between
* (this happens because A* is 8-direction, and the map isn't actually a grid).
* If @param maxDist is non-zero, path waypoints will be espaced by at most @param maxDist.
* In that case the distance between (x0, z0) and the first waypoint will also be made less than maxDist.
*/
void ImprovePathWaypoints(WaypointPath& path, pass_class_t passClass, entity_pos_t maxDist, entity_pos_t x0, entity_pos_t z0) const;
/**
* Generate a passability map, stored in the 16th bit of navcells, based on passClass,
* but with a set of impassable circular regions.
*/
void GenerateSpecialMap(pass_class_t passClass, std::vector<CircularRegion> excludedRegions);
bool m_UseJPSCache;
// Mutable may be used here as caching does not change the external const-ness of the Long Range pathfinder.
// This is thread-safe as it is order independent (no change in the output of the function for a given set of params).
// Obviously, this means that the cache should actually be a cache and not return different results
// from what would happen if things hadn't been cached.
mutable std::map<pass_class_t, shared_ptr<JumpPointCache> > m_JumpPointCache;
};
/**
* Terrain overlay for pathfinder debugging.
* Renders a representation of the most recent pathfinding operation.
*/
class LongOverlay : public TerrainTextureOverlay
{
public:
LongPathfinder& m_Pathfinder;
LongOverlay(LongPathfinder& pathfinder) :
TerrainTextureOverlay(Pathfinding::NAVCELLS_PER_TILE), m_Pathfinder(pathfinder)
{
}
virtual void BuildTextureRGBA(u8* data, size_t w, size_t h)
{
// Grab the debug data for the most recently generated path
u32 steps;
double time;
Grid<u8> debugGrid;
m_Pathfinder.GetDebugData(steps, time, debugGrid);
// Render navcell passability
u8* p = data;
for (size_t j = 0; j < h; ++j)
{
for (size_t i = 0; i < w; ++i)
{
SColor4ub color(0, 0, 0, 0);
if (!IS_PASSABLE(m_Pathfinder.m_Grid->get((int)i, (int)j), m_Pathfinder.m_DebugPassClass))
color = SColor4ub(255, 0, 0, 127);
if (debugGrid.m_W && debugGrid.m_H)
{
u8 n = debugGrid.get((int)i, (int)j);
if (n == 1)
color = SColor4ub(255, 255, 0, 127);
else if (n == 2)
color = SColor4ub(0, 255, 0, 127);
if (m_Pathfinder.m_DebugGoal.NavcellContainsGoal(i, j))
color = SColor4ub(0, 0, 255, 127);
}
*p++ = color.R;
*p++ = color.G;
*p++ = color.B;
*p++ = color.A;
}
}
// Render the most recently generated path
if (m_Pathfinder.m_DebugPath && !m_Pathfinder.m_DebugPath->m_Waypoints.empty())
{
std::vector<Waypoint>& waypoints = m_Pathfinder.m_DebugPath->m_Waypoints;
u16 ip = 0, jp = 0;
for (size_t k = 0; k < waypoints.size(); ++k)
{
u16 i, j;
Pathfinding::NearestNavcell(waypoints[k].x, waypoints[k].z, i, j, m_Pathfinder.m_GridSize, m_Pathfinder.m_GridSize);
if (k == 0)
{
ip = i;
jp = j;
}
else
{
bool firstCell = true;
do
{
if (data[(jp*w + ip)*4+3] == 0)
{
data[(jp*w + ip)*4+0] = 0xFF;
data[(jp*w + ip)*4+1] = 0xFF;
data[(jp*w + ip)*4+2] = 0xFF;
data[(jp*w + ip)*4+3] = firstCell ? 0xA0 : 0x60;
}
ip = ip < i ? ip+1 : ip > i ? ip-1 : ip;
jp = jp < j ? jp+1 : jp > j ? jp-1 : jp;
firstCell = false;
}
while (ip != i || jp != j);
}
}
}
}
};
#endif // INCLUDED_LONGPATHFINDER