0ad/source/renderer/ShadowMap.cpp

839 lines
26 KiB
C++

/* Copyright (C) 2021 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.h"
#include "ShadowMap.h"
#include "graphics/Camera.h"
#include "graphics/LightEnv.h"
#include "graphics/ShaderManager.h"
#include "gui/GUIMatrix.h"
#include "lib/bits.h"
#include "lib/ogl.h"
#include "maths/BoundingBoxAligned.h"
#include "maths/Brush.h"
#include "maths/Frustum.h"
#include "maths/MathUtil.h"
#include "maths/Matrix3D.h"
#include "ps/CLogger.h"
#include "ps/ConfigDB.h"
#include "ps/CStrInternStatic.h"
#include "ps/Profile.h"
#include "ps/VideoMode.h"
#include "renderer/backend/gl/Texture.h"
#include "renderer/DebugRenderer.h"
#include "renderer/Renderer.h"
#include "renderer/RenderingOptions.h"
#include <array>
namespace
{
constexpr int MAX_CASCADE_COUNT = 4;
constexpr float DEFAULT_SHADOWS_CUTOFF_DISTANCE = 300.0f;
constexpr float DEFAULT_CASCADE_DISTANCE_RATIO = 1.7f;
} // anonymous namespace
/**
* Struct ShadowMapInternals: Internal data for the ShadowMap implementation
*/
struct ShadowMapInternals
{
// the EXT_framebuffer_object framebuffer
GLuint Framebuffer;
// handle of shadow map
std::unique_ptr<Renderer::Backend::GL::CTexture> Texture;
// bit depth for the depth texture
int DepthTextureBits;
// width, height of shadow map
int Width, Height;
// Shadow map quality (-1 - Low, 0 - Medium, 1 - High, 2 - Very High)
int QualityLevel;
// used width, height of shadow map
int EffectiveWidth, EffectiveHeight;
// Transform world space into light space; calculated on SetupFrame
CMatrix3D LightTransform;
// transform light space into world space
CMatrix3D InvLightTransform;
CBoundingBoxAligned ShadowReceiverBound;
int CascadeCount;
float CascadeDistanceRatio;
float ShadowsCutoffDistance;
bool ShadowsCoverMap;
struct Cascade
{
// transform light space into projected light space
// in projected light space, the shadowbound box occupies the [-1..1] cube
// calculated on BeginRender, after the final shadow bounds are known
CMatrix3D LightProjection;
float Distance;
CBoundingBoxAligned FrustumBBAA;
CBoundingBoxAligned ConvexBounds;
CBoundingBoxAligned ShadowRenderBound;
// Bounding box of shadowed objects in the light space.
CBoundingBoxAligned ShadowCasterBound;
// Transform world space into texture space of the shadow map;
// calculated on BeginRender, after the final shadow bounds are known
CMatrix3D TextureMatrix;
// View port of the shadow texture where the cascade should be rendered.
SViewPort ViewPort;
};
std::array<Cascade, MAX_CASCADE_COUNT> Cascades;
// Camera transformed into light space
CCamera LightspaceCamera;
// Some drivers (at least some Intel Mesa ones) appear to handle alpha testing
// incorrectly when the FBO has only a depth attachment.
// When m_ShadowAlphaFix is true, we use DummyTexture to store a useless
// alpha texture which is attached to the FBO as a workaround.
std::unique_ptr<Renderer::Backend::GL::CTexture> DummyTexture;
// Copy of renderer's standard view camera, saved between
// BeginRender and EndRender while we replace it with the shadow camera
CCamera SavedViewCamera;
// Save the caller's FBO so it can be restored
GLint SavedViewFBO;
void CalculateShadowMatrices(const int cascade);
void CreateTexture();
void UpdateCascadesParameters();
};
void ShadowMapInternals::UpdateCascadesParameters()
{
CascadeCount = 1;
CFG_GET_VAL("shadowscascadecount", CascadeCount);
if (CascadeCount < 1 || CascadeCount > MAX_CASCADE_COUNT || g_VideoMode.GetBackend() == CVideoMode::Backend::GL_ARB)
CascadeCount = 1;
ShadowsCoverMap = false;
CFG_GET_VAL("shadowscovermap", ShadowsCoverMap);
}
void CalculateBoundsForCascade(
const CCamera& camera, const CMatrix3D& lightTransform,
const float nearPlane, const float farPlane, CBoundingBoxAligned* bbaa,
CBoundingBoxAligned* frustumBBAA)
{
frustumBBAA->SetEmpty();
// We need to calculate a circumscribed sphere for the camera to
// create a rotation stable bounding box.
const CVector3D cameraIn = camera.m_Orientation.GetIn();
const CVector3D cameraTranslation = camera.m_Orientation.GetTranslation();
const CVector3D centerNear = cameraTranslation + cameraIn * nearPlane;
const CVector3D centerDist = cameraTranslation + cameraIn * farPlane;
// We can solve 3D problem in 2D space, because the frustum is
// symmetric by 2 planes. Than means we can use only one corner
// to find a circumscribed sphere.
CCamera::Quad corners;
camera.GetViewQuad(nearPlane, corners);
for (CVector3D& corner : corners)
corner = camera.GetOrientation().Transform(corner);
const CVector3D cornerNear = corners[0];
for (const CVector3D& corner : corners)
*frustumBBAA += lightTransform.Transform(corner);
camera.GetViewQuad(farPlane, corners);
for (CVector3D& corner : corners)
corner = camera.GetOrientation().Transform(corner);
const CVector3D cornerDist = corners[0];
for (const CVector3D& corner : corners)
*frustumBBAA += lightTransform.Transform(corner);
// We solve 2D case for the right trapezoid.
const float firstBase = (cornerNear - centerNear).Length();
const float secondBase = (cornerDist - centerDist).Length();
const float height = (centerDist - centerNear).Length();
const float distanceToCenter =
(height * height + secondBase * secondBase - firstBase * firstBase) * 0.5f / height;
CVector3D position = cameraTranslation + cameraIn * (nearPlane + distanceToCenter);
const float radius = (cornerNear - position).Length();
// We need to convert the bounding box to the light space.
position = lightTransform.Rotate(position);
const float insets = 0.2f;
*bbaa = CBoundingBoxAligned(position, position);
bbaa->Expand(radius);
bbaa->Expand(insets);
}
ShadowMap::ShadowMap()
{
m = new ShadowMapInternals;
m->Framebuffer = 0;
m->Width = 0;
m->Height = 0;
m->QualityLevel = 0;
m->EffectiveWidth = 0;
m->EffectiveHeight = 0;
m->DepthTextureBits = 0;
// DepthTextureBits: 24/32 are very much faster than 16, on GeForce 4 and FX;
// but they're very much slower on Radeon 9800.
// In both cases, the default (no specified depth) is fast, so we just use
// that by default and hope it's alright. (Otherwise, we'd probably need to
// do some kind of hardware detection to work out what to use.)
// Avoid using uninitialised values in AddShadowedBound if SetupFrame wasn't called first
m->LightTransform.SetIdentity();
m->UpdateCascadesParameters();
}
ShadowMap::~ShadowMap()
{
m->Texture.reset();
m->DummyTexture.reset();
if (m->Framebuffer)
glDeleteFramebuffersEXT(1, &m->Framebuffer);
delete m;
}
// Force the texture/buffer/etc to be recreated, particularly when the renderer's
// size has changed
void ShadowMap::RecreateTexture()
{
m->Texture.reset();
m->DummyTexture.reset();
if (m->Framebuffer)
glDeleteFramebuffersEXT(1, &m->Framebuffer);
m->Framebuffer = 0;
m->UpdateCascadesParameters();
// (Texture will be constructed in next SetupFrame)
}
// SetupFrame: camera and light direction for this frame
void ShadowMap::SetupFrame(const CCamera& camera, const CVector3D& lightdir)
{
if (!m->Texture)
m->CreateTexture();
CVector3D x(0, 1, 0), eyepos;
CVector3D z = lightdir;
z.Normalize();
x -= z * z.Dot(x);
if (x.Length() < 0.001)
{
// this is invoked if the camera and light directions almost coincide
// assumption: light direction has a significant Z component
x = CVector3D(1.0, 0.0, 0.0);
x -= z * z.Dot(x);
}
x.Normalize();
CVector3D y = z.Cross(x);
// X axis perpendicular to light direction, flowing along with view direction
m->LightTransform._11 = x.X;
m->LightTransform._12 = x.Y;
m->LightTransform._13 = x.Z;
// Y axis perpendicular to light and view direction
m->LightTransform._21 = y.X;
m->LightTransform._22 = y.Y;
m->LightTransform._23 = y.Z;
// Z axis is in direction of light
m->LightTransform._31 = z.X;
m->LightTransform._32 = z.Y;
m->LightTransform._33 = z.Z;
// eye is at the origin of the coordinate system
m->LightTransform._14 = -x.Dot(eyepos);
m->LightTransform._24 = -y.Dot(eyepos);
m->LightTransform._34 = -z.Dot(eyepos);
m->LightTransform._41 = 0.0;
m->LightTransform._42 = 0.0;
m->LightTransform._43 = 0.0;
m->LightTransform._44 = 1.0;
m->LightTransform.GetInverse(m->InvLightTransform);
m->ShadowReceiverBound.SetEmpty();
m->LightspaceCamera = camera;
m->LightspaceCamera.m_Orientation = m->LightTransform * camera.m_Orientation;
m->LightspaceCamera.UpdateFrustum();
m->ShadowsCutoffDistance = DEFAULT_SHADOWS_CUTOFF_DISTANCE;
m->CascadeDistanceRatio = DEFAULT_CASCADE_DISTANCE_RATIO;
CFG_GET_VAL("shadowscutoffdistance", m->ShadowsCutoffDistance);
CFG_GET_VAL("shadowscascadedistanceratio", m->CascadeDistanceRatio);
m->CascadeDistanceRatio = Clamp(m->CascadeDistanceRatio, 1.1f, 16.0f);
m->Cascades[GetCascadeCount() - 1].Distance = m->ShadowsCutoffDistance;
for (int cascade = GetCascadeCount() - 2; cascade >= 0; --cascade)
m->Cascades[cascade].Distance = m->Cascades[cascade + 1].Distance / m->CascadeDistanceRatio;
if (GetCascadeCount() == 1 || m->ShadowsCoverMap)
{
m->Cascades[0].ViewPort =
SViewPort{1, 1, m->EffectiveWidth - 2, m->EffectiveHeight - 2};
if (m->ShadowsCoverMap)
m->Cascades[0].Distance = camera.GetFarPlane();
}
else
{
for (int cascade = 0; cascade < GetCascadeCount(); ++cascade)
{
const int offsetX = (cascade & 0x1) ? m->EffectiveWidth / 2 : 0;
const int offsetY = (cascade & 0x2) ? m->EffectiveHeight / 2 : 0;
m->Cascades[cascade].ViewPort =
SViewPort{offsetX + 1, offsetY + 1,
m->EffectiveWidth / 2 - 2, m->EffectiveHeight / 2 - 2};
}
}
for (int cascadeIdx = 0; cascadeIdx < GetCascadeCount(); ++cascadeIdx)
{
ShadowMapInternals::Cascade& cascade = m->Cascades[cascadeIdx];
const float nearPlane = cascadeIdx > 0 ?
m->Cascades[cascadeIdx - 1].Distance : camera.GetNearPlane();
const float farPlane = cascade.Distance;
CalculateBoundsForCascade(camera, m->LightTransform,
nearPlane, farPlane, &cascade.ConvexBounds, &cascade.FrustumBBAA);
cascade.ShadowCasterBound.SetEmpty();
}
}
// AddShadowedBound: add a world-space bounding box to the bounds of shadowed
// objects
void ShadowMap::AddShadowCasterBound(const int cascade, const CBoundingBoxAligned& bounds)
{
CBoundingBoxAligned lightspacebounds;
bounds.Transform(m->LightTransform, lightspacebounds);
m->Cascades[cascade].ShadowCasterBound += lightspacebounds;
}
void ShadowMap::AddShadowReceiverBound(const CBoundingBoxAligned& bounds)
{
CBoundingBoxAligned lightspacebounds;
bounds.Transform(m->LightTransform, lightspacebounds);
m->ShadowReceiverBound += lightspacebounds;
}
CFrustum ShadowMap::GetShadowCasterCullFrustum(const int cascade)
{
// Get the bounds of all objects that can receive shadows
CBoundingBoxAligned bound = m->ShadowReceiverBound;
// Intersect with the camera frustum, so the shadow map doesn't have to get
// stretched to cover the off-screen parts of large models
bound.IntersectFrustumConservative(m->Cascades[cascade].FrustumBBAA.ToFrustum());
// ShadowBound might have been empty to begin with, producing an empty result
if (bound.IsEmpty())
{
// CFrustum can't easily represent nothingness, so approximate it with
// a single point which won't match many objects
bound += CVector3D(0.0f, 0.0f, 0.0f);
return bound.ToFrustum();
}
// Extend the bounds a long way towards the light source, to encompass
// all objects that might cast visible shadows.
// (The exact constant was picked entirely arbitrarily.)
bound[0].Z -= 1000.f;
CFrustum frustum = bound.ToFrustum();
frustum.Transform(m->InvLightTransform);
return frustum;
}
// CalculateShadowMatrices: calculate required matrices for shadow map generation - the light's
// projection and transformation matrices
void ShadowMapInternals::CalculateShadowMatrices(const int cascade)
{
CBoundingBoxAligned& shadowRenderBound = Cascades[cascade].ShadowRenderBound;
shadowRenderBound = Cascades[cascade].ConvexBounds;
if (ShadowsCoverMap)
{
// Start building the shadow map to cover all objects that will receive shadows
CBoundingBoxAligned receiverBound = ShadowReceiverBound;
// Intersect with the camera frustum, so the shadow map doesn't have to get
// stretched to cover the off-screen parts of large models
receiverBound.IntersectFrustumConservative(LightspaceCamera.GetFrustum());
// Intersect with the shadow caster bounds, because there's no point
// wasting space around the edges of the shadow map that we're not going
// to draw into
shadowRenderBound[0].X = std::max(receiverBound[0].X, Cascades[cascade].ShadowCasterBound[0].X);
shadowRenderBound[0].Y = std::max(receiverBound[0].Y, Cascades[cascade].ShadowCasterBound[0].Y);
shadowRenderBound[1].X = std::min(receiverBound[1].X, Cascades[cascade].ShadowCasterBound[1].X);
shadowRenderBound[1].Y = std::min(receiverBound[1].Y, Cascades[cascade].ShadowCasterBound[1].Y);
}
else if (CascadeCount > 1)
{
// We need to offset the cascade to its place on the texture.
const CVector3D size = (shadowRenderBound[1] - shadowRenderBound[0]) * 0.5f;
if (!(cascade & 0x1))
shadowRenderBound[1].X += size.X * 2.0f;
else
shadowRenderBound[0].X -= size.X * 2.0f;
if (!(cascade & 0x2))
shadowRenderBound[1].Y += size.Y * 2.0f;
else
shadowRenderBound[0].Y -= size.Y * 2.0f;
}
// Set the near and far planes to include just the shadow casters,
// so we make full use of the depth texture's range. Add a bit of a
// delta so we don't accidentally clip objects that are directly on
// the planes.
shadowRenderBound[0].Z = Cascades[cascade].ShadowCasterBound[0].Z - 2.f;
shadowRenderBound[1].Z = Cascades[cascade].ShadowCasterBound[1].Z + 2.f;
// Setup orthogonal projection (lightspace -> clip space) for shadowmap rendering
CVector3D scale = shadowRenderBound[1] - shadowRenderBound[0];
CVector3D shift = (shadowRenderBound[1] + shadowRenderBound[0]) * -0.5;
if (scale.X < 1.0)
scale.X = 1.0;
if (scale.Y < 1.0)
scale.Y = 1.0;
if (scale.Z < 1.0)
scale.Z = 1.0;
scale.X = 2.0 / scale.X;
scale.Y = 2.0 / scale.Y;
scale.Z = 2.0 / scale.Z;
// make sure a given world position falls on a consistent shadowmap texel fractional offset
float offsetX = fmod(shadowRenderBound[0].X - LightTransform._14, 2.0f/(scale.X*EffectiveWidth));
float offsetY = fmod(shadowRenderBound[0].Y - LightTransform._24, 2.0f/(scale.Y*EffectiveHeight));
CMatrix3D& lightProjection = Cascades[cascade].LightProjection;
lightProjection.SetZero();
lightProjection._11 = scale.X;
lightProjection._14 = (shift.X + offsetX) * scale.X;
lightProjection._22 = scale.Y;
lightProjection._24 = (shift.Y + offsetY) * scale.Y;
lightProjection._33 = scale.Z;
lightProjection._34 = shift.Z * scale.Z;
lightProjection._44 = 1.0;
// Calculate texture matrix by creating the clip space to texture coordinate matrix
// and then concatenating all matrices that have been calculated so far
float texscalex = scale.X * 0.5f * (float)EffectiveWidth / (float)Width;
float texscaley = scale.Y * 0.5f * (float)EffectiveHeight / (float)Height;
float texscalez = scale.Z * 0.5f;
CMatrix3D lightToTex;
lightToTex.SetZero();
lightToTex._11 = texscalex;
lightToTex._14 = (offsetX - shadowRenderBound[0].X) * texscalex;
lightToTex._22 = texscaley;
lightToTex._24 = (offsetY - shadowRenderBound[0].Y) * texscaley;
lightToTex._33 = texscalez;
lightToTex._34 = -shadowRenderBound[0].Z * texscalez;
lightToTex._44 = 1.0;
Cascades[cascade].TextureMatrix = lightToTex * LightTransform;
}
// Create the shadow map
void ShadowMapInternals::CreateTexture()
{
// Cleanup
Texture.reset();
DummyTexture.reset();
if (Framebuffer)
{
glDeleteFramebuffersEXT(1, &Framebuffer);
Framebuffer = 0;
}
// save the caller's FBO
glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, &SavedViewFBO);
glGenFramebuffersEXT(1, &Framebuffer);
CFG_GET_VAL("shadowquality", QualityLevel);
// Get shadow map size as next power of two up from view width/height.
int shadowMapSize;
switch (QualityLevel)
{
// Low
case -1:
shadowMapSize = 512;
break;
// High
case 1:
shadowMapSize = 2048;
break;
// Ultra
case 2:
shadowMapSize = std::max(round_up_to_pow2(std::max(g_Renderer.GetWidth(), g_Renderer.GetHeight())) * 4, 4096);
break;
// Medium as is
default:
shadowMapSize = 1024;
break;
}
// Clamp to the maximum texture size.
shadowMapSize = std::min(shadowMapSize, static_cast<int>(ogl_max_tex_size));
Width = Height = shadowMapSize;
// Since we're using a framebuffer object, the whole texture is available
EffectiveWidth = Width;
EffectiveHeight = Height;
GLenum format;
const char* formatName;
Renderer::Backend::Format backendFormat = Renderer::Backend::Format::UNDEFINED;
#if CONFIG2_GLES
format = GL_DEPTH_COMPONENT;
formatName = "DEPTH_COMPONENT";
backendFormat = Renderer::Backend::Format::D24;
#else
switch (DepthTextureBits)
{
case 16: format = GL_DEPTH_COMPONENT16; formatName = "DEPTH_COMPONENT16"; backendFormat = Renderer::Backend::Format::D16; break;
case 24: format = GL_DEPTH_COMPONENT24; formatName = "DEPTH_COMPONENT24"; backendFormat = Renderer::Backend::Format::D24; break;
case 32: format = GL_DEPTH_COMPONENT32; formatName = "DEPTH_COMPONENT32"; backendFormat = Renderer::Backend::Format::D32; break;
default: format = GL_DEPTH_COMPONENT; formatName = "DEPTH_COMPONENT"; backendFormat = Renderer::Backend::Format::D24; break;
}
#endif
ENSURE(formatName);
LOGMESSAGE("Creating shadow texture (size %dx%d) (format = %s)",
Width, Height, formatName);
if (g_RenderingOptions.GetShadowAlphaFix())
{
DummyTexture = Renderer::Backend::GL::CTexture::Create2D(
Renderer::Backend::Format::R8G8B8A8, Width, Height,
Renderer::Backend::Sampler::MakeDefaultSampler(
Renderer::Backend::Sampler::Filter::NEAREST,
Renderer::Backend::Sampler::AddressMode::CLAMP_TO_EDGE));
g_Renderer.BindTexture(0, DummyTexture->GetHandle());
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, Width, Height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
}
Texture = Renderer::Backend::GL::CTexture::Create2D(
backendFormat, Width, Height,
Renderer::Backend::Sampler::MakeDefaultSampler(
#if CONFIG2_GLES
// GLES doesn't do depth comparisons, so treat it as a
// basic unfiltered depth texture
Renderer::Backend::Sampler::Filter::NEAREST,
#else
// Use GL_LINEAR to trigger automatic PCF on some devices
Renderer::Backend::Sampler::Filter::LINEAR,
#endif
Renderer::Backend::Sampler::AddressMode::CLAMP_TO_EDGE));
g_Renderer.BindTexture(0, Texture->GetHandle());
glTexImage2D(GL_TEXTURE_2D, 0, format, Width, Height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL);
// GLES requires type == UNSIGNED_SHORT or UNSIGNED_INT
#if !CONFIG2_GLES
// Enable automatic depth comparisons
glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE, GL_INTENSITY);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
#endif
ogl_WarnIfError();
// bind to framebuffer object
glBindTexture(GL_TEXTURE_2D, 0);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, Framebuffer);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, Texture->GetHandle(), 0);
if (g_RenderingOptions.GetShadowAlphaFix())
{
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, DummyTexture->GetHandle(), 0);
}
else
{
#if CONFIG2_GLES
#warning TODO: figure out whether the glDrawBuffer/glReadBuffer stuff is needed, since it is not supported by GLES
#else
glDrawBuffer(GL_NONE);
#endif
}
#if !CONFIG2_GLES
glReadBuffer(GL_NONE);
#endif
ogl_WarnIfError();
GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, SavedViewFBO);
if (status != GL_FRAMEBUFFER_COMPLETE_EXT)
{
LOGWARNING("Framebuffer object incomplete: 0x%04X", status);
// Disable shadow rendering (but let the user try again if they want)
g_RenderingOptions.SetShadows(false);
}
}
// Set up to render into shadow map texture
void ShadowMap::BeginRender()
{
{
PROFILE("bind framebuffer");
glBindTexture(GL_TEXTURE_2D, 0);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m->Framebuffer);
}
// clear buffers
{
PROFILE("clear depth texture");
// In case we used m_ShadowAlphaFix, we ought to clear the unused
// color buffer too, else Mali 400 drivers get confused.
// Might as well clear stencil too for completeness.
if (g_RenderingOptions.GetShadowAlphaFix())
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
glColorMask(0, 0, 0, 0);
}
else
glClear(GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
}
m->SavedViewCamera = g_Renderer.GetViewCamera();
glEnable(GL_SCISSOR_TEST);
}
void ShadowMap::PrepareCamera(const int cascade)
{
m->CalculateShadowMatrices(cascade);
const SViewPort vp = { 0, 0, m->EffectiveWidth, m->EffectiveHeight };
g_Renderer.SetViewport(vp);
CCamera camera = m->SavedViewCamera;
camera.SetProjection(m->Cascades[cascade].LightProjection);
camera.GetOrientation() = m->InvLightTransform;
g_Renderer.SetViewCamera(camera);
const SViewPort& cascadeViewPort = m->Cascades[cascade].ViewPort;
glScissor(
cascadeViewPort.m_X, cascadeViewPort.m_Y,
cascadeViewPort.m_Width, cascadeViewPort.m_Height);
}
// Finish rendering into shadow map texture
void ShadowMap::EndRender()
{
glDisable(GL_SCISSOR_TEST);
g_Renderer.SetViewCamera(m->SavedViewCamera);
{
PROFILE("unbind framebuffer");
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
}
const SViewPort vp = { 0, 0, g_Renderer.GetWidth(), g_Renderer.GetHeight() };
g_Renderer.SetViewport(vp);
if (g_RenderingOptions.GetShadowAlphaFix())
glColorMask(1, 1, 1, 1);
}
void ShadowMap::BindTo(const CShaderProgramPtr& shader) const
{
if (!shader->GetTextureBinding(str_shadowTex).Active() || !m->Texture)
return;
shader->BindTexture(str_shadowTex, m->Texture.get());
shader->Uniform(str_shadowScale, m->Width, m->Height, 1.0f / m->Width, 1.0f / m->Height);
const CVector3D cameraForward = g_Renderer.GetCullCamera().GetOrientation().GetIn();
shader->Uniform(str_cameraForward, cameraForward.X, cameraForward.Y, cameraForward.Z,
cameraForward.Dot(g_Renderer.GetCullCamera().GetOrientation().GetTranslation()));
if (GetCascadeCount() == 1)
{
shader->Uniform(str_shadowTransform, m->Cascades[0].TextureMatrix);
shader->Uniform(str_shadowDistance, m->Cascades[0].Distance);
}
else
{
std::vector<float> shadowDistances;
std::vector<CMatrix3D> shadowTransforms;
for (const ShadowMapInternals::Cascade& cascade : m->Cascades)
{
shadowDistances.emplace_back(cascade.Distance);
shadowTransforms.emplace_back(cascade.TextureMatrix);
}
shader->Uniform(str_shadowTransforms_0, GetCascadeCount(), shadowTransforms.data());
shader->Uniform(str_shadowTransforms, GetCascadeCount(), shadowTransforms.data());
shader->Uniform(str_shadowDistances_0, GetCascadeCount(), shadowDistances.data());
shader->Uniform(str_shadowDistances, GetCascadeCount(), shadowDistances.data());
}
}
// Depth texture bits
int ShadowMap::GetDepthTextureBits() const
{
return m->DepthTextureBits;
}
void ShadowMap::SetDepthTextureBits(int bits)
{
if (bits != m->DepthTextureBits)
{
m->Texture.reset();
m->Width = m->Height = 0;
m->DepthTextureBits = bits;
}
}
void ShadowMap::RenderDebugBounds()
{
glDepthMask(0);
glDisable(GL_CULL_FACE);
// Render various shadow bounds:
// Yellow = bounds of objects in view frustum that receive shadows
// Red = culling frustum used to find potential shadow casters
// Blue = frustum used for rendering the shadow map
const CMatrix3D transform = g_Renderer.GetViewCamera().GetViewProjection() * m->InvLightTransform;
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
g_Renderer.GetDebugRenderer().DrawBoundingBoxOutline(m->ShadowReceiverBound, CColor(1.0f, 1.0f, 0.0f, 1.0f), transform);
for (int cascade = 0; cascade < GetCascadeCount(); ++cascade)
{
glEnable(GL_BLEND);
g_Renderer.GetDebugRenderer().DrawBoundingBox(m->Cascades[cascade].ShadowRenderBound, CColor(0.0f, 0.0f, 1.0f, 0.10f), transform);
g_Renderer.GetDebugRenderer().DrawBoundingBoxOutline(m->Cascades[cascade].ShadowRenderBound, CColor(0.0f, 0.0f, 1.0f, 0.5f), transform);
glDisable(GL_BLEND);
const CFrustum frustum = GetShadowCasterCullFrustum(cascade);
// We don't have a function to create a brush directly from a frustum, so use
// the ugly approach of creating a large cube and then intersecting with the frustum
const CBoundingBoxAligned dummy(CVector3D(-1e4, -1e4, -1e4), CVector3D(1e4, 1e4, 1e4));
CBrush brush(dummy);
CBrush frustumBrush;
brush.Intersect(frustum, frustumBrush);
glEnable(GL_BLEND);
g_Renderer.GetDebugRenderer().DrawBrush(frustumBrush, CColor(1.0f, 0.0f, 0.0f, 0.1f));
g_Renderer.GetDebugRenderer().DrawBrushOutline(frustumBrush, CColor(1.0f, 0.0f, 0.0f, 0.5f));
glDisable(GL_BLEND);
}
glEnable(GL_CULL_FACE);
glDepthMask(1);
ogl_WarnIfError();
}
void ShadowMap::RenderDebugTexture()
{
glDepthMask(0);
glDisable(GL_DEPTH_TEST);
#if !CONFIG2_GLES
g_Renderer.BindTexture(0, m->Texture->GetHandle());
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
#endif
CShaderTechniquePtr texTech = g_Renderer.GetShaderManager().LoadEffect(str_canvas2d);
texTech->BeginPass();
CShaderProgramPtr texShader = texTech->GetShader();
texShader->Uniform(str_transform, GetDefaultGuiMatrix());
texShader->BindTexture(str_tex, m->Texture.get());
texShader->Uniform(str_colorAdd, CColor(0.0f, 0.0f, 0.0f, 1.0f));
texShader->Uniform(str_colorMul, CColor(1.0f, 1.0f, 1.0f, 0.0f));
texShader->Uniform(str_grayscaleFactor, 0.0f);
float s = 256.f;
float boxVerts[] = {
0,0, 0,s, s,0,
s,0, 0,s, s,s
};
float boxUV[] = {
0,0, 0,1, 1,0,
1,0, 0,1, 1,1
};
texShader->VertexPointer(2, GL_FLOAT, 0, boxVerts);
texShader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, 0, boxUV);
texShader->AssertPointersBound();
glDrawArrays(GL_TRIANGLES, 0, 6);
texTech->EndPass();
#if !CONFIG2_GLES
g_Renderer.BindTexture(0, m->Texture->GetHandle());
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
#endif
glEnable(GL_DEPTH_TEST);
glDepthMask(1);
ogl_WarnIfError();
}
int ShadowMap::GetCascadeCount() const
{
#if CONFIG2_GLES
return 1;
#else
return m->ShadowsCoverMap ? 1 : m->CascadeCount;
#endif
}