0ad/source/maths/FixedVector2D.h
Ykkrosh 2b57f4f998 # Initial support for formation movement.
Support asynchronous path queries.
Allow escaping when stuck in impassable terrain tiles.
Split Update message in multiple phases, to cope with ordering
requirements.
Support automatic walk/run animation switching.

This was SVN commit r8058.
2010-09-03 09:55:14 +00:00

227 lines
5.1 KiB
C++

/* Copyright (C) 2010 Wildfire Games.
* This file is part of 0 A.D.
*
* 0 A.D. is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* 0 A.D. is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INCLUDED_FIXED_VECTOR2D
#define INCLUDED_FIXED_VECTOR2D
#include "maths/Fixed.h"
#include "maths/Sqrt.h"
class CFixedVector2D
{
public:
fixed X, Y;
CFixedVector2D() { }
CFixedVector2D(fixed X, fixed Y) : X(X), Y(Y) { }
/// Vector equality
bool operator==(const CFixedVector2D& v) const
{
return (X == v.X && Y == v.Y);
}
/// Vector inequality
bool operator!=(const CFixedVector2D& v) const
{
return (X != v.X || Y != v.Y);
}
/// Vector addition
CFixedVector2D operator+(const CFixedVector2D& v) const
{
return CFixedVector2D(X + v.X, Y + v.Y);
}
/// Vector subtraction
CFixedVector2D operator-(const CFixedVector2D& v) const
{
return CFixedVector2D(X - v.X, Y - v.Y);
}
/// Negation
CFixedVector2D operator-() const
{
return CFixedVector2D(-X, -Y);
}
/// Vector addition
CFixedVector2D& operator+=(const CFixedVector2D& v)
{
*this = *this + v;
return *this;
}
/// Vector subtraction
CFixedVector2D& operator-=(const CFixedVector2D& v)
{
*this = *this - v;
return *this;
}
/// Scalar multiplication by an integer
CFixedVector2D operator*(int n) const
{
return CFixedVector2D(X*n, Y*n);
}
/**
* Multiply by a CFixed. Likely to overflow if both numbers are large,
* so we use an ugly name instead of operator* to make it obvious.
*/
CFixedVector2D Multiply(fixed n) const
{
return CFixedVector2D(X.Multiply(n), Y.Multiply(n));
}
/**
* Returns the length of the vector.
* Will not overflow if the result can be represented as type 'fixed'.
*/
fixed Length() const
{
// Do intermediate calculations with 64-bit ints to avoid overflows
i64 x = (i64)X.GetInternalValue();
i64 y = (i64)Y.GetInternalValue();
u64 xx = (u64)(x * x);
u64 yy = (u64)(y * y);
u64 d2 = xx + yy;
CheckUnsignedAdditionOverflow(d2, xx, L"Overflow in CFixedVector2D::Length() part 1")
u32 d = isqrt64(d2);
CheckU32CastOverflow(d, i32, L"Overflow in CFixedVector2D::Length() part 2")
fixed r;
r.SetInternalValue((i32)d);
return r;
}
/**
* Returns -1, 0, +1 depending on whether length is less/equal/greater
* than the argument.
* Avoids sqrting and overflowing.
*/
int CompareLength(fixed cmp) const
{
i64 x = (i64)X.GetInternalValue(); // abs(x) <= 2^31
i64 y = (i64)Y.GetInternalValue();
u64 xx = (u64)(x * x); // xx <= 2^62
u64 yy = (u64)(y * y);
u64 d2 = xx + yy; // d2 <= 2^63 (no overflow)
i64 c = (i64)cmp.GetInternalValue();
u64 c2 = (u64)(c * c);
if (d2 < c2)
return -1;
else if (d2 > c2)
return +1;
else
return 0;
}
/**
* Returns -1, 0, +1 depending on whether length is less/equal/greater
* than the argument's length.
* Avoids sqrting and overflowing.
*/
int CompareLength(const CFixedVector2D& other) const
{
i64 x = (i64)X.GetInternalValue();
i64 y = (i64)Y.GetInternalValue();
u64 d2 = (u64)(x * x) + (u64)(y * y);
i64 ox = (i64)other.X.GetInternalValue();
i64 oy = (i64)other.Y.GetInternalValue();
u64 od2 = (u64)(ox * ox) + (u64)(oy * oy);
if (d2 < od2)
return -1;
else if (d2 > od2)
return +1;
else
return 0;
}
bool IsZero() const
{
return (X.IsZero() && Y.IsZero());
}
/**
* Normalize the vector so that length is close to 1.
* If length is 0, does nothing.
*/
void Normalize()
{
if (!IsZero())
{
fixed l = Length();
X = X / l;
Y = Y / l;
}
}
/**
* Normalize the vector so that length is close to n.
* If length is 0, does nothing.
*/
void Normalize(fixed n)
{
fixed l = Length();
if (!l.IsZero())
{
X = X.MulDiv(n, l);
Y = Y.MulDiv(n, l);
}
}
/**
* Compute the dot product of this vector with another.
*/
fixed Dot(const CFixedVector2D& v)
{
i64 x = (i64)X.GetInternalValue() * (i64)v.X.GetInternalValue();
i64 y = (i64)Y.GetInternalValue() * (i64)v.Y.GetInternalValue();
CheckSignedAdditionOverflow(i64, x, y, L"Overflow in CFixedVector2D::Dot() part 1", L"Underflow in CFixedVector2D::Dot() part 1")
i64 sum = x + y;
sum >>= fixed::fract_bits;
CheckCastOverflow(sum, i32, L"Overflow in CFixedVector2D::Dot() part 2", L"Underflow in CFixedVector2D::Dot() part 2")
fixed ret;
ret.SetInternalValue((i32)sum);
return ret;
}
CFixedVector2D Perpendicular()
{
return CFixedVector2D(Y, -X);
}
/**
* Rotate the vector by the given angle (anticlockwise).
*/
CFixedVector2D Rotate(fixed angle)
{
fixed s, c;
sincos_approx(angle, s, c);
return CFixedVector2D(X.Multiply(c) + Y.Multiply(s), Y.Multiply(c) - X.Multiply(s));
}
};
#endif // INCLUDED_FIXED_VECTOR2D